Part Number Hot Search : 
2SA1845 APT30 LA38B WF031200 2N2007 F1012 P6KE36 RS801G
Product Description
Full Text Search
 

To Download PIC10F206T-IOTGVAO Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  ? 2004-2014 microchip technology inc. ds40001239f-page 1 pic10f200/202/204/206 devices included in this data sheet: high-performance risc cpu: only 33 single-word instructions to learn all single-cycle instructions except for program branches, which are two-cycle 12-bit wide instructions 2-level deep hardware stack direct, indirect and relative addressing modes for data and instructions 8-bit wide data path eight special function hardware registers operating speed: - 4 mhz internal clock -1 ? s instruction cycle special microcontroller features: 4 mhz precision internal oscillator: - factory calibrated to 1% in-circuit serial programming? (icsp?) in-circuit debugging (icd) support power-on reset (por) device reset timer (drt) watchdog timer (wdt) with dedicated on-chip rc oscillator for reliable operation programmable code protection multiplexed mclr input pin internal weak pull-ups on i/o pins power-saving sleep mode wake-up from sleep on pin change low-power features/cmos technology: operating current: - < 175 ? a @ 2v, 4 mhz, typical standby current: - 100 na @ 2v, typical low-power, high-speed flash technology: - 100,000 flash endurance - > 40 year retention fully static design wide operating voltage range: 2.0v to 5.5v wide temperature range: - industrial: -40 ? c to +85 ? c - extended: -40 ? c to +125 ? c peripheral features (pic10f200/202): four i/o pins: - three i/o pins with individual direction control - one input-only pin - high current sink/source for direct led drive - wake-on-change - weak pull-ups 8-bit real-time clock/counter (tmr0) with 8-bit programmable prescaler peripheral features (pic10f204/206): four i/o pins: - three i/o pins with individual direction control - one input-only pin - high current sink/source for direct led drive - wake-on-change - weak pull-ups 8-bit real-time clock/counter (tmr0) with 8-bit programmable prescaler one comparator: - internal absolute voltage reference - both comparator inputs visible externally - comparator output visible externally pic10f200 pic10f204 pic10f202 pic10f206 table 1: pic10f20x memory and features device program memory data memory i/o timers 8-bit comparator flash (words) sram (bytes) pic10f200 256 16 4 1 0 pic10f202 512 24 4 1 0 pic10f204 256 16 4 1 1 pic10f206 512 24 4 1 1 6-pin, 8-bit flas h microcontrollers downloaded from: http:///
pic10f200/202/204/206 ds40001239f-page 2 ? 2004-2014 microchip technology inc. pin diagrams figure 1: 6-pin sot-23 figure 2: 8-pin pdip figure 3: 8-pin dfn pic10f200/202 12 3 65 4 gp0/icspdat v ss gp1/icspclk gp3/mclr /v pp v dd gp2/t0cki/fosc4 pic10f204/206 12 3 65 4 gp0/icspdat/cin+ v ss gp1/icspclk/cin- gp3/mclr /v pp v dd gp2/t0cki/cout/fosc4 gp2/t0cki/fosc4 n/c n/c n/c n/c gp2/t0cki/cout/fosc4 pic10f200/202 12 3 4 87 6 5 v dd gp3/mclr /v pp v ss gp0/icspdat gp1/icspclk pic10f204/206 12 3 4 87 6 5 v dd gp3/mclr /v pp v ss gp0/icspdat/cin+ gp1/icspclk/cin- n/c pic10f204/206 gp3/mclr /v pp v ss gp0/icspdat/cin+ n/c gp2/t0cki/cout/fosc4 v dd gp1/icspclk/cin- gp2/t0cki/fosc4 n/c pic10f200/202 v dd gp0/icspdat gp1/icspclk n/c v ss gp3/mclr /v pp 12 3 4 87 6 5 12 3 4 87 6 5 downloaded from: http:///
? 2004-2014 microchip technology inc. ds40001239f-page 3 pic10f200/202/204/206 table of contents 1.0 general description.......................................... ................................................... ............ ............................................................. 4 2.0 pic10f200/202/204/206 device varieties ............................... ................................................... ... ............................................. 5 3.0 architectural overview ........................................................... ........................................... ........................................................... 6 4.0 memory organization .......................................... ................................................... ............ ........................................................ 11 5.0 i/o port ............................................................................... ..................................... ................................................................... 20 6.0 timer0 module and tmr0 register (pic10f200/202)..................................... ........................................ .................................. 23 7.0 timer0 module and tmr0 register (pic10f204/206)..................................... ........................................ .................................. 27 8.0 comparator module.......................................... ................................................... .............. ......................................................... 31 9.0 special features of the cpu........................................................ ......................................... ..................................................... 35 10.0 instruction set summary ........................................................ ............................................ ........................................................ 45 11.0 development support............................................ ................................................... ......... ......................................................... 53 12.0 electrical characteristics ........................................................ ......................................... ........................................................... 57 13.0 dc and ac characteristics graphs and tables.................................... ............................................ ......................................... 67 14.0 packaging information..................................................... ................................................. .......................................................... 75 the microchip web site ....................................................................... .................................. .............................................................. 85 customer change notification service ....................................... ................................................... . ..................................................... 85 customer support............................................... ................................................... ............. ................................................................. 85 product identification system ................................................. ..................................................................................................... ........ 86 to our valued customers it is our intention to provide our valued customers with the best documentation possible to ensure successful use of your micro chip products. to this end, we will continue to improve our publications to better suit your needs. our publications will be refined and enhanced as new volumes and updates are introduced. if you have any questions or comments regar ding this publication, please contact the marketing communications department via e-mail at docerrors@microchip.com . we welcome your feedback. most current data sheet to obtain the most up-to-date version of this data s heet, please register at our worldwide web site at: http://www.microchip.com you can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page . the last character of the literature number is the versi on number, (e.g., ds30000000a is ve rsion a of document ds30000000). errata an errata sheet, describing minor operational differences fr om the data sheet and recommended workarounds, may exist for curren t devices. as device/documentation issues become known to us, we will publish an errata sheet. the errata will specify the revisi on of silicon and revision of document to which it applies. to determine if an errata sheet exists for a particular device, please check with one of the following: microchips worldwide web site; http://www.microchip.com your local microchip sales office (see last page) when contacting a sales office, please specify which device, re vision of silicon and data sheet (include literature number) you are using. customer notification system register on our web site at www.microchip.com to receive the most current information on all of our products. downloaded from: http:///
pic10f200/202/204/206 ds40001239f-page 4 ? 2004-2014 microchip technology inc. 1.0 general description the pic10f200/202/204/206 devices from microchip technology are low-cost, high-performance, 8-bit, fully-static, flash-based cmos microcontrollers. they employ a risc architecture with only 33 single-word/ single-cycle instructions. all instructions are single cycle (1 ? s) except for program branches, which take two cycles. the pic10f200/202/204/206 devices deliver performance in an order of magnitude higher than their competitors in the same price category. the 12-bit wide instructions are highly symmetrical, resulting in a typical 2:1 code compression over other 8-bit microcontrollers in its class. the easy-to-use and easy to remember instruction set reduces development time significantly. the pic10f200/202/204/206 products are equipped with special features that reduce system cost and power requirements. the power-on reset (por) and device reset timer (drt) eliminate the need for external reset circuitry. intrc internal oscillator mode is provided, thereby preserving the limited number of i/o available. power-saving sleep mode, watchdog timer and code protection features improve system cost, power and reliability. the pic10f200/202/204/206 devices are available in cost-effective flash, which is suitable for production in any volume. the customer can take full advantage of microchips price leadership in flash programmable microcontrollers, while benefiting from the flash programmable flexibility. the pic10f200/202/204/206 products are supported by a full-featured macro assembler, a software simulator, an in-circuit debugger, a c compiler, a low-cost development programmer and a full featured programmer. all the tools are supported on ibm ? pc and compatible machines. 1.1 applications the pic10f200/202/204/206 devices fit in applications ranging from personal care appliances and security systems to low-power remote transmitters/receivers. the flash technology makes customizing application programs (transmitter codes, appliance settings, receiver frequencies, etc.) extremely fast and convenient. the small footprint packages, for through hole or surface mounting, make these microcontrollers well suited for applications with space limitations. low cost, low power, high performance, ease-of-use and i/o flexibility make the pic10f200/202/204/206 devices very versatile even in areas where no microcontroller use has been considered before (e.g., timer functions, logic and plds in larger systems and coprocessor applications). table 1-1: pic10f200/202/204/206 devices pic10f200 pic10f202 pic10f204 pic10f206 clock maximum frequency of operation (mhz) 4 4 4 4 memory flash program memory 256 512 256 512 data memory (bytes) 16 24 16 24 peripherals timer module(s) tmr0 tmr0 tmr0 tmr0 wake-up from sleep on pin change yes yes yes yes comparators 0 0 1 1 features i/o pins 3 3 3 3 input-only pins 1 1 1 1 internal pull-ups yes yes yes yes in-circuit serial programming? yes yes yes yes number of instructions 33 33 33 33 packages 6-pin sot-23 8-pin pdip, dfn 6-pin sot-23 8-pin pdip, dfn 6-pin sot-23 8-pin pdip, dfn 6-pin sot-23 8-pin pdip, dfn the pic10f200/202/204/206 devices have power-on reset, selectabl e watchdog timer, selectable code-protect, high i/o current capability and precision internal oscillator. the pic10f200/202/204/206 devices use serial programming with data pin gp0 and clock pin gp1. downloaded from: http:///
? 2004-2014 microchip technology inc. ds40001239f-page 5 pic10f200/202/204/206 2.0 pic10f200/202/204/206 device varieties a variety of packaging options are available. depending on application and production requirements, the proper device option can be selected using the information in this section. when placing orders, please use the pic10f200/202/204/206 product identification system at the back of this data sheet to specify the correct part number. 2.1 quick turn programming (qtp) devices microchip offers a qtp programming service for factory production orders. this service is made available for users who choose not to program medium-to-high quantity units and whose code patterns have stabilized. the devices are identical to the flash devices but with all flash locations and fuse options already programmed by the factory. certain code and prototype verification procedures do apply before production shipments are available. please contact your local microchip technology sales office for more details. 2.2 serialized quick turn programming sm (sqtp sm ) devices microchip offers a unique programming service, where a few user-defined locations in each device are programmed with different serial numbers. the serial numbers may be random, pseudo-random or sequential. serial programming allows each device to have a unique number, which can serve as an entry code, password or id number. downloaded from: http:///
pic10f200/202/204/206 ds40001239f-page 6 ? 2004-2014 microchip technology inc. 3.0 architectural overview the high performance of the pic10f200/202/204/206 devices can be attributed to a number of architectural features commonly found in risc microprocessors. to begin with, the pic10f200/202/204/206 devices use a harvard architecture in which program and data are accessed on separate buses. this improves bandwidth over traditional von neumann architectures where program and data are fetched on the same bus. separating program and data memory further allows instructions to be sized differently than the 8-bit wide data word. instruction opcodes are 12 bits wide, making it possible to have all single-word instructions. a 12-bit wide program memory access bus fetches a 12-bit instruction in a single cycle. a two-stage pipeline overlaps fetch and execution of instructions. consequently, all instructions (33) execute in a single cycle (1 ? s @ 4 mhz) except for program branches. the table below lists program memory (flash) and data memory (ram) for the pic10f200/202/204/206 devices. the pic10f200/202/204/206 devices can directly or indirectly address its register files and data memory. all special function registers (sfr), including the pc, are mapped in the data memory. the pic10f200/202/ 204/206 devices have a highly orthogonal (symmetrical) instruction set that makes it possible to carry out any operation, on any register, using any addressing mode. this symmetrical nature and lack of special optimal situations make programming with the pic10f200/202/204/206 devices simple, yet efficient. in addition, the learning curve is reduced significantly. the pic10f200/202/204/206 devices contain an 8-bit alu and working register. the alu is a general purpose arithmetic unit. it performs arithmetic and boolean functions between data in the working register and any register file. the alu is 8 bits wide and capable of addition, subtraction, shift and logical operations. unless otherwise mentioned, arithmetic operations are twos complement in nature. in two-operand instructions, one operand is typically the w (working) register. the other operand is either a file register or an immediate constant. in single operand instructions, the operand is either the w register or a file register. the w register is an 8-bit working register used for alu operations. it is not an addressable register. depending on the instruction executed, the alu may affect the values of the carry (c), digit carry (dc) and zero (z) bits in the status register. the c and dc bits operate as a borrow and digit borrow out bit, respectively, in subtraction. see the subwf and addwf instructions for examples. a simplified block diagram is shown in figure 3-1 and figure 3-2 , with the corresponding device pins described in ta bl e 3 - 2 . table 3-1: pic10f2xx memory device memory program data pic10f200 256 x 12 16 x 8 pic10f202 512 x 12 24 x 8 pic10f204 256 x 12 16 x 8 pic10f206 512 x 12 24 x 8 downloaded from: http:///
? 2004-2014 microchip technology inc. ds40001239f-page 7 pic10f200/202/204/206 figure 3-1: pic10f20 0/202 block diagram flash program memory 9-10 data bus 8 12 program bus instruction reg program counter ram file registers direct addr 5 ram addr 9 addr mux indirect addr fsr reg status reg mux alu w reg device reset power-on reset watchdog timer instruction decode & control timing generation mclr v dd , v ss timer0 gpio 8 8 gp3/mclr /v pp gp2/t0cki/fosc4 gp1/icspclk gp0/icspdat 5-7 3 stack 1 stack 2 24 or 16 internal rc clock 512 x12 or bytes timer 256 x12 downloaded from: http:///
pic10f200/202/204/206 ds40001239f-page 8 ? 2004-2014 microchip technology inc. figure 3-2: pic10f20 4/206 block diagram flash program memory 9-10 data bus 8 12 program bus instruction reg program counter ram file registers direct addr 5 ram addr 9 addr mux indirect addr fsr reg status reg mux alu w reg device reset power-on reset watchdog timer instruction decode & control timing generation mclr v dd , v ss timer0 gpio 8 8 gp3/mclr /v pp gp2/t0cki/cout/fosc4 gp1/icspclk/cin- gp0/icspdat/cin+ 5-7 3 stack 1 stack 2 24 or 16 internal rc clock 512 x12 or bytes timer 256 x12 comparator cin+ cin- cout downloaded from: http:///
? 2004-2014 microchip technology inc. ds40001239f-page 9 pic10f200/202/204/206 table 3-2: pic10f200/202/204/206 pinout description name function input type output type description gp0/icspdat/cin+ gp0 ttl cmos bidirectional i/o pin. can be software programmed for internal weak pull-up and wake-up from sleep on pin change. icspdat st cmos in-circuit serial programming ? data pin. cin+ an comparator input (pic10f204/206 only). gp1/icspclk/cin- gp1 ttl cmos bidirectional i/o pin. can be software programmed for internal weak pull-up and wake-up from sleep on pin change. icspclk st cmos in-circuit serial programming clock pin. cin- an comparator input (pic10f204/206 only). gp2/t0cki/cout/ fosc4 gp2 ttl cmos bidirectional i/o pin. t0cki st clock input to tmr0. cout cmos comparator output (pic10f204/206 only). fosc4 cmos oscillator/4 output. gp3/mclr /v pp gp3 ttl input pin. can be software programmed for internal weak pull-up and wake-up from sleep on pin change. mclr st master clear (reset). when configured as mclr , this pin is an active-low reset to the device. voltage on gp3/mclr /v pp must not exceed v dd during normal device operation or the device will enter programming mode. weak pull-up always on if configured as mclr . v pp hv programming voltage input. v dd v dd p positive supply for logic and i/o pins. v ss v ss p ground reference for logic and i/o pins. legend: i = input, o = output, i/o = input/output, p = power, = not used, ttl = ttl input, st = schmitt trigger input, an = analog input downloaded from: http:///
pic10f200/202/204/206 ds40001239f-page 10 ? 2004-2014 microchip technology inc. 3.1 clocking scheme/instruction cycle the clock is internally divided by four to generate four non-overlapping quadrature clocks, namely q1, q2, q3 and q4. internally, the pc is incremented every q1 and the instruction is fetched from program memory and latched into the instruction register in q4. it is decoded and executed during the following q1 through q4. the clocks and instruction execution flow is shown in figure 3-3 and example 3-1 . 3.2 instruction flow/pipelining an instruction cycle consists of four q cycles (q1, q2, q3 and q4). the instruction fetch and execute are pipelined such that fetch takes one instruction cycle, while decode and execute take another instruction cycle. however, due to the pipelining, each instruction effectively executes in one cycle. if an instruction causes the pc to change (e.g., goto ), then two cycles are required to complete the instruction ( example 3-1 ). a fetch cycle begins with the pc incrementing in q1. in the execution cycle, the fetched instruction is latched into the instruction register (ir) in cycle q1. this instruction is then decoded and executed during the q2, q3 and q4 cycles. data memory is read during q2 (operand read) and written during q4 (destination write). figure 3-3: clock /instruction cycle example 3-1: instruction pipeline flow q1 q2 q3 q4 q1 q2 q3 q4 q1 q2 q3 q4 osc1 q1q2 q3 q4 pc pc pc + 1 pc + 2 fetch inst (pc) execute inst (pc C 1) fetch inst (pc + 1) execute inst (pc) fetch inst (pc + 2) execute inst (pc + 1) internal phase clock all instructions are single cycle, except for any program branches. these take two cycles, since the fetch ins truction is flushed from the pipeline, while the new instruction is being fetched and then executed. 1. movlw 03h fetch 1 execute 1 2. movwf gpio fetch 2 execute 2 3. call sub_1 fetch 3 execute 3 4. bsf gpio, bit1 fetch 4 flush fetch sub_1 execute sub_1 downloaded from: http:///
? 2004-2014 microchip technology inc. ds40001239f-page 11 pic10f200/202/204/206 4.0 memory organization the pic10f200/202/204/206 memories are organized into program memory and data memory. data memory banks are accessed using the file select register (fsr). 4.1 program memory organization for the pic10f200/204 the pic10f200/204 devices have a 9-bit program counter (pc) capable of addressing a 512 x 12 program memory space. only the first 256 x 12 (0000h-00ffh) for the pic10f200/204 are physically implemented (see figure 4-1 ). accessing a location above these boundaries will cause a wraparound within the first 256 x 12 space (pic10f200/204). the effective reset vector is at 0000h (see figure 4-1 ). location 00ffh (pic10f200/204) contains the internal clock oscillator calibration value. this value should never be overwritten. figure 4-1: program memory map and stack for the pic10f200/204 call, retlw pc<7:0> stack level 1 stack level 2 user memory space 9 0000h 01ffh on-chip program memory reset vector (1) note 1: address 0000h becomes the effective reset vector. location 00ffh contains the movlw xx internal oscillator calibration value. 256 word 00ffh 0100h downloaded from: http:///
pic10f200/202/204/206 ds40001239f-page 12 ? 2004-2014 microchip technology inc. 4.2 program memory organization for the pic10f202/206 the pic10f202/206 devices have a 10-bit program counter (pc) capable of addressing a 1024 x 12 program memory space. only the first 512 x 12 (0000h-01ffh) for the pic10f202/206 are physically implemented (see figure 4-2 ). accessing a location above these boundaries will cause a wraparound within the first 512 x 12 space (pic10f202/206). the effective reset vector is at 0000h (see figure 4-2 ). location 01ffh (pic10f202/206) contains the internal clock oscillator calibration value. this value should never be overwritten. figure 4-2: program memory map and stack for the pic10f202/206 4.3 data memory organization data memory is composed of registers or bytes of ram. therefore, data memory for a device is specified by its register file. the register file is divided into two functional groups: special function registers (sfr) and general purpose registers (gpr). the special function registers include the tmr0 register, the program counter (pcl), the status register, the i/o register (gpio) and the file select register (fsr). in addition, special function registers are used to control the i/o port configuration and prescaler options. the general purpose registers are used for data and control information under command of the instructions. for the pic10f200/204, the register file is composed of seven special function registers and 16 general purpose registers (see figure 4-3 and figure 4-4 ). for the pic10f202/206, the register file is composed of eight special function registers and 24 general purpose registers (see figure 4-4 ). 4.3.1 general purpose register file the general purpose register file is accessed, either directly or indirectly, through the file select register (fsr). see section 4.9 ?indirect data addressing: indf and fsr registers? . call, retlw pc<8:0> stack level 1 stack level 2 user memory space 10 0000h 02ffh reset vector (1) note 1: address 0000h becomes the effective reset vector. location 01ffh contains the movlw xx internal oscillator calibration value. 512 words 01ffh 0200h on-chip program memory downloaded from: http:///
? 2004-2014 microchip technology inc. ds40001239f-page 13 pic10f200/202/204/206 figure 4-3: pic10f200/204 register file map figure 4-4: pic10f202/206 register file map file address 00h01h 02h 03h 04h 05h 06h 07h 10h indf (1) tmr0 pcl status fsr osccal gpio general purpose registers note 1: not a physical register. see section 4.9 ?indirect data addressing: indf and fsr registers? . 2: pic10f204 only. unimplemented on the pic10f200 and reads as 00h. 3: unimplemented, read as 00h. 08h cmcon0 (2) 0fh 1fh unimplemented (3) file address 00h01h 02h 03h 04h 05h 06h 07h 1fh indf (1) tmr0 pcl status fsr osccal gpio general purpose registers note 1: not a physical register. see section 4.9 ?indirect data addressing: indf and fsr registers? . 2: pic10f206 only. unimplemented on the pic10f202 and reads as 00h. 08h cmcon0 (2) downloaded from: http:///
pic10f200/202/204/206 ds40001239f-page 14 ? 2004-2014 microchip technology inc. 4.3.2 special function registers the special function registers (sfrs) are registers used by the cpu and peripheral functions to control the operation of the device ( tab l e 4 - 1 ). the special function registers can be classified into two sets. the special function registers associated with the core functions are described in this section. those related to the operation of the peripheral features are described in the section for each peripheral feature. table 4-1: special function register (sfr) summary (pic10f200/202/204/206) address name bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 value on power-on reset (2) register on page 00h indf uses contents of fsr to address data memory (not a physical register) xxxx xxxx 19 01h tmr0 8-bit real-time clock/counter xxxx xxxx 23 , 27 02h (1) pcl low-order 8 bits of pc 1111 1111 18 03h status gpwuf cwuf (5) t o pd zd cc 00-1 1xxx (3) 15 04h fsr indirect data memory address pointer 111x xxxx 19 05h osccal cal6 cal5 cal4 cal3 cal2 cal1 cal0 fosc4 1111 1110 17 06h gpio gp3 gp2 gp1 gp0 ---- xxxx 20 07h (4) cmcon0 cmpout couten pol cmpt0cs cmpon cnref cpref cwu 1111 1111 28 n/a trisgpio i/o control register ---- 1111 31 n/a option gpwu gppu t0cs t0se psa ps2 ps1 ps0 1111 1111 16 legend: C = unimplemented, read as 0 , x = unknown, u = unchanged, q = value depends on condition. note 1: the upper byte of the program counter is not directly accessible. see section 4.7 ?program counter? for an explanation of how to access these bits. 2: other (non power-up) resets include external reset through mclr , watchdog timer and wake-up on pin change reset. 3: see table 9-1 for other reset specific values. 4: pic10f204/206 only. 5: pic10f204/206 only. on all other devices, this bit is reserved and should not be used. downloaded from: http:///
? 2004-2014 microchip technology inc. ds40001239f-page 15 pic10f200/202/204/206 4.4 status register this register contains the arithmetic status of the alu, the reset status and the page preselect bit. the status register can be the destination for any instruction, as with any other register. if the status register is the destination for an instruction that affects the z, dc or c bits, then the write to these three bits is disabled. these bits are set or cleared according to the device logic. furthermore, the to and pd bits are not writable. therefore, the result of an instruction with the status register as destination may be different than intended. for example, clrf status , will clear the upper three bits and set the z bit. this leaves the status register as 000u u1uu (where u = unchanged). therefore, it is recommended that only bcf , bsf and movwf instructions be used to alter the status register. these instructions do not affect the z, dc or c bits from the status register. for other instructions which do affect status bits, see section 10.0 ?instruction set summary? . register 4-1: status register r/w-0 r/w-0 u-1 r-1 r-1 r/w-x r/w-x r/w-x gpwuf cwuf (1) t o pd zd cc bit 7 bit 0 legend: r = readable bit w = writable bit u = unimplemented bit, read as 0 -n = value at por 1 = bit is set 0 = bit is cleared x = bit is unknown bit 7 gpwuf: gpio reset bit 1 = reset due to wake-up from sleep on pin change 0 = after power-up or other reset bit 6 cwuf: comparator wake-up on change flag bit (1) 1 = reset due to wake-up from sleep on comparator change 0 = after power-up or other reset conditions. bit 5 reserved: do not use. use of this bit may affect upward compatibility with future products. bit 4 to : time-out bit 1 = after power-up, clrwdt instruction or sleep instruction 0 = a wdt time-out occurred bit 3 pd : power-down bit 1 = after power-up or by the clrwdt instruction 0 = by execution of the sleep instruction bit 2 z: zero bit 1 = the result of an arithmetic or logic operation is zero 0 = the result of an arithmetic or logic operation is not zero bit 1 dc: digit carry/borrow bit (for addwf and subwf instructions) addwf : 1 = a carry from the 4th low-order bit of the result occurred 0 = a carry from the 4th low-order bit of the result did not occur subwf : 1 = a borrow from the 4th low-order bit of the result did not occur 0 = a borrow from the 4th low-order bit of the result occurred bit 0 c: carry/borrow bit (for addwf , subwf and rrf , rlf instructions) addwf : subwf : rrf or rlf : 1 = a carry occurred 1 = a borrow did not occur load bit with lsb or msb, respectively 0 = a carry did not occur 0 = a borrow occurred note 1: this bit is used on the pic10f204/206. for code compatibility do not use this bit on the pic10f200/202. downloaded from: http:///
pic10f200/202/204/206 ds40001239f-page 16 ? 2004-2014 microchip technology inc. 4.5 option register the option register is a 8-bit wide, write-only register, which contains various control bits to configure the timer0/wdt prescaler and timer0. by executing the option instruction, the contents of the w register will be transferred to the option register. a reset sets the option<7:0> bits. note: if tris bit is set to 0 , the wake-up on change and pull-up functions are disabled for that pin (i.e., note that tris overrides option control of gppu and gpwu) . note: if the t0cs bit is set to 1 , it will override the tris function on the t0cki pin. register 4-2: option register w-1 w-1 w-1 w-1 w-1 w-1 w-1 w-1 gpwu gppu t0cs t0se psa ps2 ps1 ps0 bit 7 bit 0 legend: r = readable bit w = writable bit u = unimplemented bit, read as 0 -n = value at por 1 = bit is set 0 = bit is cleared x = bit is unknown bit 7 gpwu : enable wake-up on pin change bit (gp0, gp1, gp3) 1 = disabled 0 = enabled bit 6 gppu : enable weak pull-ups bit (gp0, gp1, gp3) 1 = disabled 0 = enabled bit 5 t0cs: timer0 clock source select bit 1 = transition on t0cki pin (overrides tris on the t0cki pin) 0 = transition on internal instruction cycle clock, f osc /4 bit 4 t0se: timer0 source edge select bit 1 = increment on high-to-low transition on the t0cki pin 0 = increment on low-to-high transition on the t0cki pin bit 3 psa: prescaler assignment bit 1 = prescaler assigned to the wdt 0 = prescaler assigned to timer0 bit 2-0 ps<2:0>: prescaler rate select bits . 000001 010 011 100 101 110 111 1 : 2 1 : 4 1 : 8 1 : 16 1 : 32 1 : 64 1 : 128 1 : 256 1 : 1 1 : 2 1 : 4 1 : 8 1 : 16 1 : 32 1 : 64 1 : 128 bit value timer0 rate wdt rate downloaded from: http:///
? 2004-2014 microchip technology inc. ds40001239f-page 17 pic10f200/202/204/206 4.6 osccal register the oscillator calibration (osccal) register is used to calibrate the internal precision 4 mhz oscillator. it contains seven bits for calibration . after you move in the calibration constant, do not change the value. see section 9.2.2 ?internal 4 mhz oscillator? . note: erasing the device will also erase the pre-programmed internal calibration value for the internal oscillator. the calibration value must be read prior to erasing the part so it can be reprogrammed correctly later. register 4-3: osccal register r/w-1 r/w-1 r/w-1 r/w-1 r/w-1 r/w-1 r/w-1 r/w-0 cal6 cal5 cal4 cal3 cal2 cal1 cal0 fosc4 bit 7 bit 0 legend: r = readable bit w = writable bit u = unimplemented bit, read as 0 -n = value at por 1 = bit is set 0 = bit is cleared x = bit is unknown bit 7-1 cal<6:0>: oscillator calibration bits 0111111 = maximum frequency 0000001 0000000 = center frequency 1111111 1000000 = minimum frequency bit 0 fosc4: intosc/4 output enable bit (1) 1 = intosc/4 output onto gp2 0 = gp2/t0cki/cout applied to gp2 note 1: overrides gp2/t0cki/cout control registers when enabled. downloaded from: http:///
pic10f200/202/204/206 ds40001239f-page 18 ? 2004-2014 microchip technology inc. 4.7 program counter as a program instruction is executed, the program counter (pc) will contain the address of the next program instruction to be executed. the pc value is increased by one every instruction cycle, unless an instruction changes the pc. for a goto instruction, bits 8-0 of the pc are provided by the goto instruction word. the program counter low (pcl) is mapped to pc<7:0>. for a call instruction, or any instruction where the pcl is the destination, bits 7:0 of the pc again are provided by the instruction word. however, pc<8> does not come from the instruction word, but is always cleared ( figure 4-5 ). instructions where the pcl is the destination, or modify pcl instructions, include movwf pc, addwf pc and bsf pc,5. figure 4-5: loading of pc branch instructions 4.7.1 effects of reset the pc is set upon a reset, which means that the pc addresses the last location in program memory (i.e., the oscillator calibration instruction). after executing movlw xx , the pc will roll over to location 0000h and begin executing user code. 4.8 stack the pic10f200/204 devices have a 2-deep, 8-bit wide hardware push/pop stack. the pic10f202/206 devices have a 2-deep, 9-bit wide hardware push/pop stack. a call instruction will push the current value of stack 1 into stack 2 and then push the current pc value, incremented by one, into stack level 1. if more than two sequential call s are executed, only the most recent two return addresses are stored. a retlw instruction will pop the contents of stack level 1 into the pc and then copy stack level 2 contents into level 1. if more than two sequential retlw s are executed, the stack will be filled with the address previously stored in stack level 2. note: because pc<8> is cleared in the call instruction or any modify pcl instruction, all subroutine calls or computed jumps are limited to the first 256 locations of any program memory page (512 words long). pc 87 0 pcl instruction word goto instruction call or modify pcl instruction pc 87 0 pcl instruction word reset to 0 note 1: the w register will be loaded with the literal value specified in the instruction. this is particularly useful for the implementation of the data look-up tables within the program memory. 2: there are no status bits to indicate stack overflows or stack underflow conditions. 3: there are no instruction mnemonics called push or pop. these are actions that occur from the execution of the call and retlw instructions. downloaded from: http:///
? 2004-2014 microchip technology inc. ds40001239f-page 19 pic10f200/202/204/206 4.9 indirect data addressing: indf and fsr registers the indf register is not a physical register. addressing indf actually addresses the register whose address is contained in the fsr register (fsr is a pointer ). this is indirect addressing. 4.10 indirect addressing register file 09 contains the value 10h register file 0a contains the value 0ah load the value 09 into the fsr register a read of the indf register will return the value of 10h increment the value of the fsr register by one (fsr = 0a) a read of the indr register now will return the value of 0ah. reading indf itself indirectly (fsr = 0 ) will produce 00h. writing to the indf register indirectly results in a no operation (although status bits may be affected). a simple program to clear ram locations 10h-1fh using indirect addressing is shown in example 4-1 . example 4-1: how to clear ram using indirect addressing the fsr is a 5-bit wide register. it is used in conjunction with the indf register to indirectly address the data memory area. the fsr<4:0> bits are used to select data memory addresses 00h to 1fh. figure 4-6: direct/indirect addre ssing (pic10f200/202/204/206) note: pic10f200/202/204/206 C do not use banking. fsr <7:5> are unimplemented and read as 1 s. movlw 0x10 ;initialize po inter movwf fsr ;to ram next clrf indf ;clear indf ;register incf fsr,f ;inc pointer btfsc fsr,4 ;all done? goto next ;no, clear next continue : ;yes, continue : note 1: for register map detail, see section 4.3 ?data memory organization? . location select location select indirect addressing direct addressing data memory (1) 0fh 10h bank 0 0 4 (fsr) 00h 1fh (opcode) 0 4 downloaded from: http:///
pic10f200/202/204/206 ds40001239f-page 20 ? 2004-2014 microchip technology inc. 5.0 i/o port as with any other register, the i/o register(s) can be written and read under program control. however, read instructions (e.g., movf gpio , w ) always read the i/o pins independent of the pins input/output modes. on reset, all i/o ports are defined as input (inputs are at high-impedance) since the i/o control registers are all set. 5.1 gpio gpio is an 8-bit i/o register. only the low-order 4 bits are used (gp<3:0>). bits 7 through 4 are unimplemented and read as 0 s. please note that gp3 is an input-only pin. pins gp0, gp1 and gp3 can be configured with weak pull-ups and also for wake-up on change. the wake-up on change and weak pull-up functions are not pin selectable. if gp3/mclr is configured as mclr , weak pull-up is always on and wake-up on change for this pin is not enabled. 5.2 tris registers the output driver control register is loaded with the contents of the w register by executing the tris f instruction. a 1 from a tris register bit puts the corresponding output driver in a high-impedance mode. a 0 puts the contents of the output data latch on the selected pins, enabling the output buffer. the exceptions are gp3, which is input-only and the gp2/ t0cki/cout/fosc4 pin, which may be controlled by various registers. see table 5-1 . the tris registers are write-only and are set (output drivers disabled) upon reset. 5.3 i/o interfacing the equivalent circuit for an i/o port pin is shown in figure 5-1 . all port pins, except gp3 which is input- only, may be used for both input and output operations. for input operations, these ports are non-latching. any input must be present until read by an input instruction (e.g., movf gpio , w ). the outputs are latched and remain unchanged until the output latch is rewritten. to use a port pin as output, the corresponding direction control bit in tris must be cleared (= 0 ). for use as an input, the corresponding tris bit must be set. any i/o pin (except gp3) can be programmed individually as input or output. figure 5-1: pic10f200/202/204/206 equivalent circuit for a single i/o pin note: a read of the ports reads the pins, not the output data latches. that is, if an output driver on a pin is enabled and driven high, but the external system is holding it low, a read of the port will indicate that the pin is low. table 5-1: order of precedence for pin functions priority gp0 gp1 gp2 gp3 1 cin+ cin- fosc4 i/mclr 2 tris gpio tris gpio cout 3 t 0 c k i 4 t r i s g p i o data bus q d q ck q d q ck p n wrport tris f data tris rd port v ss v dd i/o pin wreg latch latch reset note 1: see table 3-2 for buffer type. v ss v dd (1) downloaded from: http:///
? 2004-2014 microchip technology inc. ds40001239f-page 21 pic10f200/202/204/206 5.4 i/o programming considerations 5.4.1 bidirectional i/o ports some instructions operate internally as read followed by write operations. the bcf and bsf instructions, for example, read the entire port into the cpu, execute the bit operation and rewrite the result. caution must be used when these instructions are applied to a port where one or more pins are used as input/outputs. for example, a bsf operation on bit 2 of gpio will cause all eight bits of gpio to be read into the cpu, bit 2 to be set and the gpio value to be written to the output latches. if another bit of gpio is used as a bidirectional i/o pin (say bit 0), and it is defined as an input at this time, the input signal present on the pin itself would be read into the cpu and rewritten to the data latch of this particular pin, overwriting the previous content. as long as the pin stays in the input mode, no problem occurs. however, if bit 0 is switched into output mode later on, the content of the data latch may now be unknown. example 5-1 shows the effect of two sequential read-modify-write instructions (e.g., bcf, bsf , etc.) on an i/o port. a pin actively outputting a high or a low should not be driven from external devices at the same time in order to change the level on this pin (wired or, wired and). the resulting high output currents may damage the chip. example 5-1: read-modify-write instructions on an i/o port 5.4.2 successive operations on i/o ports the actual write to an i/o port happens at the end of an instruction cycle, whereas for reading, the data must be valid at the beginning of the instruction cycle ( figure 5-2 ). therefore, care must be exercised if a write followed by a read operation is carried out on the same i/o port. the sequence of instructions should allow the pin voltage to stabilize (load dependent) before the next instruction causes that file to be read into the cpu. otherwise, the previous state of that pin may be read into the cpu rather than the new state. when in doubt, it is better to separate these instructions with a nop or another instruction not accessing this i/o port. table 5-2: summary of port registers address name bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 value on power-on reset value on all other resets n/a trisgpio i/o control register ---- 1111 ---- 1111 n/a option gpwu gppu t0cs t0se psa ps2 ps1 ps0 1111 1111 1111 1111 03h status gpwuf cwuf to pd z dc c 00-1 1xxx qq-q quuu (1), (2) 06h gpio gp3 gp2 gp1 gp0 ---- xxxx ---- uuuu legend: shaded cells are not used by port registers, read as 0 , C = unimplemented, read as 0 , x = unknown, u = unchanged, q = depends on condition. note 1: if reset was due to wake-up on pin change, then bit 7 = 1 . all other resets will cause bit 7 = 0 . 2: if reset was due to wake-up on comparator change, then bit 6 = 1 . all other resets will cause bit 6 = 0 . ;initial gpio settings;gpio<3:2> inputs ;gpio<1:0> outputs ; ; gpio latch gpio pins ; ---------- ---------- bcf gpio, 1 ;---- pp01 ---- pp11 bcf gpio, 0 ;---- pp10 ---- pp11 movlw 007h; tris gpio ;---- pp10 ---- pp11 ; note 1: the user may have expected the pin values to be ---- pp00 . the 2nd bcf caused gp1 to be latched as the pin value (high). downloaded from: http:///
pic10f200/202/204/206 ds40001239f-page 22 ? 2004-2014 microchip technology inc. figure 5-2: successive i/o operation (pic10f200/202/204/206) pc pc + 1 pc + 2 pc + 3 q1 q2 q3 q4 q1 q2 q3 q4 q1 q2 q3 q4 q1 q2 q3 q4 instruction fetched gp<2:0> movwf gpio nop port pin sampled here nop movf gpio, w instruction executed movwf gpio (write to gpio) nop movf gpio,w this example shows a write to gpio followed by a read from gpio. data setup time = (0.25 t cy C t pd ) where: t cy = instruction cycle t pd = propagation delay therefore, at higher clock frequencies, a write followed by a read may be problematic. (read gpio) port pin written here downloaded from: http:///
? 2004-2014 microchip technology inc. ds40001239f-page 23 pic10f200/202/204/206 6.0 timer0 module and tmr0 register (pic10f200/202) the timer0 module has the following features: 8-bit timer/counter register, tmr0 readable and writable 8-bit software programmable prescaler internal or external clock select: - edge select for external clock figure 6-1 is a simplified block diagram of the timer0 module. timer mode is selected by clearing the t0cs bit (option<5>). in timer mode, the timer0 module will increment every instruction cycle (without prescaler). if tmr0 register is written, the increment is inhibited for the following two cycles ( figure 6-2 and figure 6-3 ). the user can work around this by writing an adjusted value to the tmr0 register. counter mode is selected by setting the t0cs bit (option<5>). in this mode, timer0 will increment either on every rising or falling edge of pin t0cki. the t0se bit (option<4>) determines the source edge. clearing the t0se bit selects the rising edge. restrictions on the external clock input are discussed in detail in section 6.1 ?using timer0 with an external clock (pic10f200/202)? . the prescaler may be used by either the timer0 module or the watchdog timer, but not both. the prescaler assignment is controlled in software by the control bit, psa (option<3>). clearing the psa bit will assign the prescaler to timer0. the prescaler is not readable or writable. when the prescaler is assigned to the timer0 module, prescale values of 1:2, 1:4, 1:256 are selectable. section 6.2 ?prescaler? details the operation of the prescaler. a summary of registers associated with the timer0 module is found in ta bl e 6 - 1 . figure 6-1: timer0 block diagram figure 6-2: timer0 timing: in ternal clock/no prescale note 1: bits t0cs, t0se, psa, ps2, ps1 and ps0 are located in the option register. 2: the prescaler is shared with the watchdog timer ( figure 6-5 ). 0 1 1 0 t0cs (1) f osc /4 programmable prescaler (2) sync with internal clocks tmr0 reg ps out (2 t cy delay) ps out data bus 8 psa (1) ps2, ps1, ps0 (1) 3 sync t0se (1) gp2/t0cki pin pc C 1 q1 q2 q3 q4 q1 q2 q3 q4 q1 q2 q3 q4 q1 q2 q3 q4 q1 q2 q3 q4 q1 q2 q3 q4 q1 q2 q3 q4 q1 q2 q3 q4 instruction fetch timer0 pc pc + 1 pc + 2 pc + 3 pc + 4 pc + 6 t0 t0 + 1 t0 + 2 nt0 nt0 + 1 nt0 + 2 movwf tmr0 movf tmr0,w movf tmr0,w movf tmr0,w movf tmr0,w movf tmr0,w write tmr0 executed read tmr0 reads nt0 read tmr0 reads nt0 read tmr0 reads nt0 read tmr0 reads nt0 + 1 read tmr0 reads nt0 + 2 instruction executed pc + 5 pc (program counter) downloaded from: http:///
pic10f200/202/204/206 ds40001239f-page 24 ? 2004-2014 microchip technology inc. figure 6-3: timer0 timing: in ternal clock/prescale 1:2 6.1 using timer0 with an external clock (pic10f200/202) when an external clock input is used for timer0, it must meet certain requirements. the external clock requirement is due to internal phase clock (t osc ) synchronization. also, there is a delay in the actual incrementing of timer0 after synchronization. 6.1.1 external clock synchronization when no prescaler is used, the external clock input is the same as the prescaler output. the synchronization of t0cki with the internal phase clocks is accomplished by sampling the prescaler output on the q2 and q4 cycles of the internal phase clocks ( figure 6-4 ). therefore, it is necessary for t0cki to be high for at least 2 t osc (and a small rc delay of 2 tt0h) and low for at least 2 t osc (and a small rc delay of 2 tt0h). refer to the electrical specification of the desired device. when a prescaler is used, the external clock input is divided by the asynchronous ripple counter-type prescaler, so that the prescaler output is symmetrical. for the external clock to meet the sampling requirement, the ripple counter must be taken into account. therefore, it is necessary for t0cki to have a period of at least 4 t osc (and a small rc delay of 4 tt0h) divided by the prescaler value. the only requirement on t0cki high and low time is that they do not violate the minimum pulse width requirement of tt0h. refer to parameters 40, 41 and 42 in the electrical specification of the desired device. pc C 1 q1 q2 q3 q4 q1 q2 q3 q4 q1 q2 q3 q4 q1 q2 q3 q4 q1 q2 q3 q4 q1 q2 q3 q4 q1 q2 q3 q4 q1 q2 q3 q4 instruction fetch timer0 pc pc + 1 pc + 2 pc + 3 pc + 4 pc + 6 t0 t0 + 1 nt0 nt0 + 1 movwf tmr0 movf tmr0,w movf tmr0,w movf tmr0,w movf tmr0,w movf tmr0,w write tmr0 executed read tmr0 reads nt0 read tmr0 reads nt0 read tmr0 reads nt0 read tmr0 reads nt0 + 1 read tmr0 reads nt0 + 2 instruction executed pc + 5 pc (program counter) table 6-1: registers associated with timer0 address name bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 value on power-on reset value on all other resets 01h tmr0 timer0 C 8-bit real-time clock/counter xxxx xxxx uuuu uuuu n/a option gpwu gppu t0cs t0se psa ps2 ps1 ps0 1111 1111 1111 1111 n/a trisgpio(1) i/o control register ---- 1111 ---- 1111 legend: shaded cells not used by timer0. C = unimplemented, x = unknown, u = unchanged. note 1: the tris of the t0cki pin is overridden when t0cs = 1. downloaded from: http:///
? 2004-2014 microchip technology inc. ds40001239f-page 25 pic10f200/202/204/206 6.1.2 timer0 increment delay since the prescaler output is synchronized with the internal clocks, there is a small delay from the time the external clock edge occurs to the time the timer0 module is actually incremented. figure 6-4 shows the delay from the external clock edge to the timer incrementing. figure 6-4: timer0 timing with external clock 6.2 prescaler an 8-bit counter is available as a prescaler for the timer0 module or as a postscaler for the watchdog timer (wdt), respectively (see section 9.6 ?watchdog timer (wdt)? ). for simplicity, this counter is being referred to as prescaler throughout this data sheet. the psa and ps<2:0> bits (option<3:0>) determine prescaler assignment and prescale ratio. when assigned to the timer0 module, all instructions writing to the tmr0 register (e.g., clrf 1 , movwf 1 , bsf 1,x , etc.) will clear the prescaler. when assigned to wdt, a clrwdt instruction will clear the prescaler along with the wdt. the prescaler is neither readable nor writable. on a reset, the prescaler contains all 0 s. 6.2.1 switching prescaler assignment the prescaler assignment is fully under software control (i.e., it can be changed on-the-fly during program execution). to avoid an unintended device reset, the following instruction sequence ( example 6-1 ) must be executed when changing the prescaler assignment from timer0 to the wdt. example 6-1: changing prescaler (timer0 ? ? wdt) increment timer0 (q4) external clock input or q1 q2 q3 q4 q1 q2 q3 q4 q1 q2 q3 q4 q1 q2 q3 q4 timer0 t0 t0 + 1 t0 + 2 small pulse misses sampling external clock/prescaler output after sampling (3) prescaler output (2) (1) note 1: delay from clock input change to timer0 increment is 3 t osc to 7 t osc (duration of q = t osc ). therefore, the error in measuring the interval between two edges on timer0 input = 4 t osc max. 2: external clock if no prescaler selected; prescaler output otherwise. 3: the arrows indicate the points in time where sampling occurs. note: the prescaler may be used by either the timer0 module or the wdt, but not both. thus, a prescaler assignment for the timer0 module means that there is no prescaler for the wdt and vice versa. clrwdt ;clear wdt clrf tmr0 ;clear tmr0 & prescaler movlw 00xx1111b ;these 3 lines (5, 6, 7) option ;are required only if ;desired clrwdt ;ps<2:0> are 000 or 001 movlw 00xx1xxxb ;set postscaler to option ;desired wdt rate downloaded from: http:///
pic10f200/202/204/206 ds40001239f-page 26 ? 2004-2014 microchip technology inc. to change the prescaler from the wdt to the timer0 module, use the sequence shown in example 6-2 . this sequence must be used even if the wdt is disabled. a clrwdt instruction should be executed before switching the prescaler. example 6-2: changing prescaler (wdt ? timer0) figure 6-5: block diagram of the timer0/wdt prescaler clrwdt ;clear wdt and ;prescaler movlw xxxx0xxx ;select tmr0, new ;prescale value and;clock source option t cy (= f osc /4) sync 2 cycles tmr0 reg 8-bit prescaler 8-to-1 mux m mux watchdog timer psa (1) 0 1 01 wdt time-out ps<2:0> (1) 8 psa (1) wdt enable bit 01 0 1 data bus 8 psa (1) t0cs (1) m u x m u x u x t0se (1) gp2/t0cki (2) pin note 1: t0cs, t0se, psa, ps<2:0> are bits in the option register. 2: t0cki is shared with pin gp2 on the pic10f200/202/204/206. downloaded from: http:///
? 2004-2014 microchip technology inc. ds40001239f-page 27 pic10f200/202/204/206 7.0 timer0 module and tmr0 register (pic10f204/206) the timer0 module has the following features: 8-bit timer/counter register, tmr0 readable and writable 8-bit software programmable prescaler internal or external clock select: - edge select for external clock - external clock from either the t0cki pin or from the output of the comparator figure 7-1 is a simplified block diagram of the timer0 module. timer mode is selected by clearing the t0cs bit (option<5>). in timer mode, the timer0 module will increment every instruction cycle (without prescaler). if tmr0 register is written, the increment is inhibited for the following two cycles ( figure 7-2 and figure 7-3 ). the user can work around this by writing an adjusted value to the tmr0 register. there are two types of counter mode. the first counter mode uses the t0cki pin to increment timer0. it is selected by setting the t0cs bit (option<5>), setting the cmpt0cs bit (cmcon0<4>) and setting the couten bit (cmcon0<6>). in this mode, timer0 will increment either on every rising or falling edge of pin t0cki. the t0se bit (option<4>) determines the source edge. clearing the t0se bit selects the rising edge. restrictions on the external clock input are discussed in detail in section 7.1 ?using timer0 with an external clock (pic10f204/206)? . the second counter mode uses the output of the comparator to increment timer0. it can be entered in two different ways. the first way is selected by setting the t0cs bit (option<5>) and clearing the cmpt0cs bit (cmcon<4>); (couten [cmcon<6>]) does not affect this mode of operation. this enables an internal connection between the comparator and the timer0. the second way is selected by setting the t0cs bit (option<5>), setting the cmpt0cs bit (cmcon0<4>) and clearing the couten bit (cmcon0<6>). this allows the output of the comparator onto the t0cki pin, while keeping the t0cki input active. therefore, any comparator change on the cout pin is fed back into the t0cki input. the t0se bit (option<4>) determines the source edge. clearing the t0se bit selects the rising edge. restrictions on the external clock input as discussed in section 7.1 ?using timer0 with an external clock (pic10f204/206)? the prescaler may be used by either the timer0 module or the watchdog timer, but not both. the prescaler assignment is controlled in software by the control bit, psa (option<3>). clearing the psa bit will assign the prescaler to timer0. the prescaler is not readable or writable. when the prescaler is assigned to the timer0 module, prescale values of 1:2, 1:4,..., 1:256 are selectable. section 7.2 ?prescaler? details the operation of the prescaler. a summary of registers associated with the timer0 module is found in ta bl e 7 - 1 . figure 7-1: timer0 blo ck diagram (pic10f204/206 ) note 1: bits t0cs, t0se, psa, ps2, ps1 and ps0 are located in the option register. 2: the prescaler is shared with the watchdog timer ( figure 7-5 ). 3: bit cmpt0cs is located in the cmcon0 register, cmcon0<4>. 0 1 1 0 t0cs (1) f osc /4 programmable prescaler (2) sync with internal clocks tmr0 reg ps out (2 t cy delay) ps out data bus 8 psa (1) ps2, ps1, ps0 (1) 3 sync t0se (1) t0cki pin cmpt0cs (3) 10 internal comparator output downloaded from: http:///
pic10f200/202/204/206 ds40001239f-page 28 ? 2004-2014 microchip technology inc. figure 7-2: timer0 timing: in ternal clock/no prescale figure 7-3: timer0 timing: internal clock/prescale 1:2 7.1 using timer0 with an external clock (pic10f204/206) when an external clock input is used for timer0, it must meet certain requirements. the external clock requirement is due to internal phase clock (t osc ) synchronization. also, there is a delay in the actual incrementing of timer0 after synchronization. 7.1.1 external clock synchronization when no prescaler is used, the external clock input is the same as the prescaler output. the synchronization of an external clock with the internal phase clocks is accomplished by sampling the prescaler output on the q2 and q4 cycles of the internal phase clocks ( figure 7-4 ). therefore, it is necessary for t0cki or the comparator output to be high for at least 2 t osc (and a small rc delay of 2 tt0h) and low for at least 2 t osc (and a small rc delay of 2 tt0h). refer to the electrical specification of the desired device. when a prescaler is used, the external clock input is divided by the asynchronous ripple counter type prescaler, so that the prescaler output is symmetrical. for the external clock to meet the sampling requirement, the ripple counter must be taken into account. therefore, it is necessary for t0cki or the comparator output to have a period of at least 4 t osc (and a small rc delay of 4 tt0h) divided by the prescaler value. the only requirement on t0cki or the comparator output high and low time is that they do not violate the minimum pulse width requirement of tt0h. refer to parameters 40, 41 and 42 in the electrical specification of the desired device. pc C 1 q1 q2 q3 q4 q1 q2 q3 q4 q1 q2 q3 q4 q1 q2 q3 q4 q1 q2 q3 q4 q1 q2 q3 q4 q1 q2 q3 q4 q1 q2 q3 q4 instruction fetch timer0 pc pc + 1 pc + 2 pc + 3 pc + 4 pc + 6 t0 t0 + 1 t0 + 2 nt0 nt0 + 1 nt0 + 2 movwf tmr0 movf tmr0,w movf tmr0,w movf tmr0,w movf tmr0,w movf tmr0,w write tmr0 executed read tmr0 reads nt0 read tmr0 reads nt0 read tmr0 reads nt0 read tmr0 reads nt0 + 1 read tmr0 reads nt0 + 2 instruction executed pc+5 pc (program counter) pc C 1 q1 q2 q3 q4 q1 q2 q3 q4 q1 q2 q3 q4 q1 q2 q3 q4 q1 q2 q3 q4 q1 q2 q3 q4 q1 q2 q3 q4 q1 q2 q3 q4 instruction fetch timer0 pc pc + 1 pc + 2 pc + 3 pc + 4 pc + 6 t0 t0 + 1 nt0 nt0 + 1 movwf tmr0 movf tmr0,w movf tmr0,w movf tmr0,w movf tmr0,w movf tmr0,w write tmr0 executed read tmr0 reads nt0 read tmr0 reads nt0 read tmr0 reads nt0 read tmr0 reads nt0 + 1 read tmr0 reads nt0 + 2 instruction executed pc + 5 pc (program counter) table 7-1: registers associated with timer0 address name bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 value on power-on reset value on all other resets 01h tmr0 timer0 C 8-bit real-time clock/counter xxxx xxxx uuuu uuuu 07h cmcon0 cmpout couten pol cmpt0cs cmpon cnref cpref cwu 1111 1111 uuuu uuuu n/a option gpwu gppu t0cs t0se psa ps2 ps1 ps0 1111 1111 1111 1111 n/a trisgpio(1) i/o control register ---- 1111 ---- 1111 legend: shaded cells not used by timer0. C = unimplemented, x = unknown, u = unchanged. note 1: the tris of the t0cki pin is overridden when t0cs = 1. downloaded from: http:///
? 2004-2014 microchip technology inc. ds40001239f-page 29 pic10f200/202/204/206 7.1.2 timer0 increment delay since the prescaler output is synchronized with the internal clocks, there is a small delay from the time the external clock edge occurs to the time the timer0 module is actually incremented. figure 7-4 shows the delay from the external clock edge to the timer incrementing. figure 7-4: timer0 timing with external clock 7.2 prescaler an 8-bit counter is available as a prescaler for the timer0 module or as a postscaler for the watchdog timer (wdt), respectively (see figure 9-6 ). for simplicity, this counter is being referred to as prescaler throughout this data sheet. the psa and ps<2:0> bits (option<3:0>) determine prescaler assignment and prescale ratio. when assigned to the timer0 module, all instructions writing to the tmr0 register (e.g., clrf 1 , movwf 1 , bsf 1,x , etc.) will clear the prescaler. when assigned to wdt, a clrwdt instruction will clear the prescaler along with the wdt. the prescaler is neither readable nor writable. on a reset, the prescaler contains all 0 s. 7.2.1 switching prescaler assignment the prescaler assignment is fully under software control (i.e., it can be changed on-the-fly during program execution). to avoid an unintended device reset, the following instruction sequence ( example 7-1 ) must be executed when changing the prescaler assignment from timer0 to the wdt. example 7-1: changing prescaler (timer0 ? ? wdt) to change the prescaler from the wdt to the timer0 module, use the sequence shown in example 7.2 . this sequence must be used even if the wdt is disabled. a clrwdt instruction should be executed before switching the prescaler. increment timer0 (q4) external clock input or q1 q2 q3 q4 q1 q2 q3 q4 q1 q2 q3 q4 q1 q2 q3 q4 timer0 t0 t0 + 1 t0 + 2 small pulse misses sampling external clock/prescaler output after sampling (3) prescaler output (2) (1) note 1: delay from clock input change to timer0 increment is 3 t osc to 7 t osc (duration of q = t osc ). therefore, the error in measuring the interval between two edges on timer0 input = 4 t osc max. 2: external clock if no prescaler selected; prescaler output otherwise. 3: the arrows indicate the points in time where sampling occurs. note: the prescaler may be used by either the timer0 module or the wdt, but not both. thus, a prescaler assignment for the timer0 module means that there is no prescaler for the wdt and vice versa. clrwdt ;clear wdt clrf tmr0 ;clear tmr0 & prescaler movlw 00xx1111b ;these 3 lines (5, 6, 7) option ;are required only if ;desired clrwdt ;ps<2:0> are 000 or 001 movlw 00xx1xxxb ;set postscaler to option ;desired wdt rate downloaded from: http:///
pic10f200/202/204/206 ds40001239f-page 30 ? 2004-2014 microchip technology inc. example 7-2: changing prescaler (wdt ? timer0) figure 7-5: block diagram of the timer0/wdt prescaler clrwdt ;clear wdt and ;prescaler movlw xxxx0xxx ;select tmr0, new ;prescale value and;clock source option t cy (= f osc /4) sync 2 cycles tmr0 reg 8-bit prescaler 8-to-1 mux m mux watchdog timer psa (1) 0 1 01 wdt time-out ps<2:0> (1) 8 psa (1) wdt enable bit 01 0 1 data bus 8 psa (1) t0cs (1) m u x m u x u x t0se (1) gp2/t0cki (2) pin note 1: t0cs, t0se, psa, ps<2:0> are bits in the option register. 2: t0cki is shared with pin gp2. 3: bit cmpt0cs is located in the cmcon0 register. 1 0 comparator output cmpt0cs (3) downloaded from: http:///
? 2004-2014 microchip technology inc. ds40001239f-page 31 pic10f200/202/204/206 8.0 comparator module the comparator module contains one analog comparator. the inputs to the comparator are multiplexed with gp0 and gp1 pins. the output of the comparator can be placed on gp2. the cmcon0 register, shown in register 8-1 , controls the comparator operation. a block diagram of the comparator is shown in figure 8-1 . register 8-1: cmcon0 register r-1 r/w-1 r/w-1 r/w-1 r/w-1 r/w-1 r/w-1 r/w-1 cmpout couten pol cmpt0cs cmpon cnref cpref cwu bit 7 bit 0 legend: r = readable bit w = writable bit u = unimplemented bit, read as 0 -n = value at por 1 = bit is set 0 = bit is cleared x = bit is unknown bit 7 cmpout: comparator output bit 1 = v in + > v in - 0 = v in + < v in - bit 6 couten : comparator output enable bit (1, 2) 1 = output of comparator is not placed on the cout pin 0 = output of comparator is placed in the cout pin bit 5 pol: comparator output polarity bit (2) 1 = output of comparator not inverted 0 = output of comparator inverted bit 4 cmpt0cs : comparator tmr0 clock source bit (2) 1 = tmr0 clock source selected by t0cs control bit 0 = comparator output used as tmr0 clock source bit 3 cmpon: comparator enable bit 1 = comparator is on 0 = comparator is off bit 2 cnref: comparator negative reference select bit (2) 1 = cin- pin (3) 0 = internal voltage reference bit 1 cpref: comparator positive reference select bit (2) 1 = cin+ pin (3) 0 = cin- pin (3) bit 0 cwu : comparator wake-up on change enable bit (2) 1 = wake-up on comparator change is disabled 0 = wake-up on comparator change is enabled. note 1: overrides t0cs bit for tris control of gp2. 2: when the comparator is turned on, these control bits assert themselves. when the comparator is off, these bits have no effect on the device operation and the other control registers have precedence. 3: pic10f204/206 only. downloaded from: http:///
pic10f200/202/204/206 ds40001239f-page 32 ? 2004-2014 microchip technology inc. 8.1 comparator configuration the on-board comparator inputs, (gp0/cin+, gp1/ cin-), as well as the comparator output (gp2/cout), are steerable. the cmcon0, option and tris registers are used to steer these pins (see figure 8-1 ). if the comparator mode is changed, the comparator output level may not be valid for the specified mode change delay shown in table 12-1 . figure 8-1: block diag ram of the comparator note: the comparator can have an inverted output (see figure 8-1 ). + - c+ c- band gap buffer (0.6v) cmpon pol t0cksel t0cki/gp2/cout c outen cout (register) t0cki pin t0cki qd s cwuf read cmcon cwu cpref cnref table 8-1: tmr0 clock source function muxing t0cs cmpt0cs couten source 0x x internal instruction cycle 10 0 cmpout 10 1 cmpout 11 0 cmpout 11 1 t0cki downloaded from: http:///
? 2004-2014 microchip technology inc. ds40001239f-page 33 pic10f200/202/204/206 8.2 comparator operation a single comparator is shown in figure 8-2 along with the relationship between the analog input levels and the digital output. when the analog input at v in + is less than the analog input v in -, the output of the comparator is a digital low level. when the analog input at v in + is greater than the analog input v in -, the output of the comparator is a digital high level. the shaded areas of the output of the comparator in figure 8-2 represent the uncertainty due to input offsets and response time. see table 12-1 for common mode voltage. figure 8-2: single comparator 8.3 comparator reference an internal reference signal may be used depending on the comparator operating mode. the analog signal that is present at v in - is compared to the signal at v in + and the digital output of the comparator is adjusted accordingly ( figure 8-2 ). please see tab l e 1 2- 1 for internal reference specifications. 8.4 comparator response time response time is the minimum time, after selecting a new reference voltage or input source, before the comparator output is to have a valid level. if the comparator inputs are changed, a delay must be used to allow the comparator to settle to its new state. please see table 12-1 for comparator response time specifications. 8.5 comparator output the comparator output is read through cmcon0 register. this bit is read-only. the comparator output may also be used internally, see figure 8-1 . 8.6 comparator wake-up flag the comparator wake-up flag is set whenever all of the following conditions are met: cwu = 0 ( cmcon0<0>) cmcon0 has been read to latch the last known state of the cmpout bit ( movf cmcon0, w) device is in sleep the output of the comparator has changed state the wake-up flag may be cleared in software or by another device reset. 8.7 comparator operation during sleep when the comparator is active and the device is placed in sleep mode, the comparator remains active. while the comparator is powered-up, higher sleep currents than shown in the power-down current specification will occur. to minimize power consumption while in sleep mode, turn off the comparator before entering sleep. 8.8 effects of a reset a power-on reset (por) forces the cmcon0 register to its reset state. this forces the comparator module to be in the comparator reset mode. this ensures that all potential inputs are analog inputs. device current is minimized when analog inputs are present at reset time. the comparator will be powered-down during the reset interval. 8.9 analog input connection considerations a simplified circuit for an analog input is shown in figure 8-3 . since the analog pins are connected to a digital output, they have reverse biased diodes to v dd and v ss . the analog input therefore, must be between v ss and v dd . if the input voltage deviates from this range by more than 0.6v in either direction, one of the diodes is forward biased and a latch-up may occur. a maximum source impedance of 10 k ? is recommended for the analog sources. any external component connected to an analog input pin, such as a capacitor or a zener diode, should have very little leakage current. C + vin+ vin- result result v in - v in + note: analog levels on any pin that is defined as a digital input may cause the input buffer to consume more current than is specified. downloaded from: http:///
pic10f200/202/204/206 ds40001239f-page 34 ? 2004-2014 microchip technology inc. figure 8-3: analog input mode va r s < 10 k ? a in c pin 5pf v dd v t = 0.6v v t = 0.6v r ic i leakage 500 na v ss legend: c pin = input capacitance v t = threshold voltage i leakage = leakage current at the pin r ic = interconnect resistance r s = source impedance va = analog voltage table 8-2: registers associated with comparator module address name bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 value on por value on all other resets 03h status gpwuf cwuf t o pd zd cc 00-1 1xxx qq0q quuu 07h cmcon0 cmpout couten pol cmpt0cs cmpon cnref cpref cwu 1111 1111 uuuu uuuu n/a trisgpio i/o control register ---- 1111 ---- 1111 legend: x = unknown, u = unchanged, C = unimplemented, read as 0 , q = depends on condition. downloaded from: http:///
? 2004-2014 microchip technology inc. ds40001239f-page 35 pic10f200/202/204/206 9.0 special features of the cpu what sets a microcontroller apart from other processors are special circuits that deal with the needs of real-time applications. the pic10f200/202/204/206 microcontrollers have a host of such features intended to maximize system reliability, minimize cost through elimination of external components, provide power- saving operating modes and offer code protection. these features are: reset: - power-on reset (por) - device reset timer (drt) - watchdog timer (wdt) - wake-up from sleep on pin change - wake-up from sleep on comparator change sleep code protection id locations in-circuit serial programming? clock out the pic10f200/202/204/206 devices have a watchdog timer, which can be shut off only through configuration bit wdte. it runs off of its own rc oscillator for added reliability. when using intrc, there is an 18 ms delay only on v dd power-up. with this timer on-chip, most applications need no external reset circuitry. the sleep mode is designed to offer a very low-current power-down mode. the user can wake-up from sleep through a change on input pins, wake-up from comparator change, or through a watchdog timer time-out. 9.1 configuration bits the pic10f200/202/204/206 configuration words consist of 12 bits. configuration bits can be programmed to select various device configurations. one bit is the watchdog timer enable bit, one bit is the mclr enable bit and one bit is for code protection (see register 9-1 ). register 9-1: configuration word for pic10f200/202/204/206 (1,2) r/p-1 r/p-1 r/p-1 r/p-1 r/p-1 r/p-1 r/p-1 r/p-1 r/p-1 r/p-1 r/p-1 r/p-1 mclre cp wdte bit 11 bit 0 legend: r = readable bit w = writable bit u = unimplemented bit, read as 0 -n = value at por 1 = bit is set 0 = bit is cleared x = bit is unknown bit 11-5 unimplemented: read as 0 bit 4 mclre: gp3/mclr pin function select bit 1 = gp3/mclr pin function is mclr 0 = gp3/mclr pin function is digital i/o, mclr internally tied to v dd bit 3 cp : code protection bit 1 = code protection off 0 = code protection on bit 2 wdte: watchdog timer enable bit 1 = wdt enabled 0 = wdt disabled bit 1-0 reserved: read as 0 note 1: refer to the pic10f200/202/204/206 memory programming specifications (ds41228) to determine how to access the configuration word. the configuration word is not user addressable during device operation. 2: intrc is the only oscillator mode offered on the pic10f200/202/204/206. downloaded from: http:///
pic10f200/202/204/206 ds40001239f-page 36 ? 2004-2014 microchip technology inc. 9.2 oscillator configurations 9.2.1 oscillator types the pic10f200/202/204/206 devices are offered with internal oscillator mode only. intosc: internal 4 mhz oscillator 9.2.2 internal 4 mhz oscillator the internal oscillator provides a 4 mhz (nominal) system clock (see section 12.0 ?electrical characteristics? for information on variation over voltage and temperature). in addition, a calibration instruction is programmed into the last address of memory, which contains the calibration value for the internal oscillator. this location is always uncode protected, regardless of the code- protect settings. this value is programmed as a movlw xx instruction where xx is the calibration value and is placed at the reset vector. this will load the w register with the calibration value upon reset and the pc will then roll over to the users program at address 0x000. the user then has the option of writing the value to the osccal register (05h) or ignoring it. osccal, when written to with the calibration value, will trim the internal oscillator to remove process variation from the oscillator frequency. 9.3 reset the device differentiates between various kinds of reset: power-on reset (por) mclr reset during normal operation mclr reset during sleep wdt time-out reset during normal operation wdt time-out reset during sleep wake-up from sleep on pin change wake-up from sleep on comparator change some registers are not reset in any way, they are unknown on por and unchanged in any other reset. most other registers are reset to reset state on power-on reset (por), mclr , wdt or wake-up on pin change reset during normal operation. they are not affected by a wdt reset during sleep or mclr reset during sleep, since these resets are viewed as resumption of normal operation. the exceptions to this are to , pd , gpwuf and cwuf bits. they are set or cleared differently in different reset situations. these bits are used in software to determine the nature of reset. see table 9-1 for a full description of reset states of all registers. note: erasing the device will also erase the pre- programmed internal calibration value for the internal oscillator. the calibration value must be read prior to erasing the part so it can be reprogrammed correctly later. table 9-1: reset conditions for registers ? pic10f200/202/204/206 register address power-on reset mclr reset, wdt time-out, wake-up on pin change, wake on comparator change w qqqq qqqu (1) qqqq qqqu (1) indf 00h xxxx xxxx uuuu uuuu tmr0 01h xxxx xxxx uuuu uuuu pcl 02h 1111 1111 1111 1111 status 03h 00-1 1xxx q00q quuu (2) status (3) 03h 00-1 1xxx qq0q quuu (2) fsr 04h 111x xxxx 111u uuuu osccal 05h 1111 1110 uuuu uuuu gpio 06h ---- xxxx ---- uuuu cmcon (3) 07h 1111 1111 uuuu uuuu option 1111 1111 1111 1111 trisgpio ---- 1111 ---- 1111 legend: u = unchanged, x = unknown, C = unimplemented bit, read as 0 , q = value depends on condition. note 1: bits <7:2> of w register contain oscillator calibration values due to movlw xx instruction at top of memory. 2: see ta b l e 9 - 2 for reset value for specific conditions. 3: pic10f204/206 only. downloaded from: http:///
? 2004-2014 microchip technology inc. ds40001239f-page 37 pic10f200/202/204/206 9.3.1 mclr enable this configuration bit, when unprogrammed (left in the 1 state), enables the external mclr function. when programmed, the mclr function is tied to the internal v dd and the pin is assigned to be a i/o. see figure 9-1 . figure 9-1: mclr select 9.4 power-on reset (por) the pic10f200/202/204/206 devices incorporate an on-chip power-on reset (por) circuitry, which provides an internal chip reset for most power-up situations. the on-chip por circuit holds the chip in reset until v dd has reached a high enough level for proper operation. to take advantage of the internal por, program the gp3/mclr /v pp pin as mclr and tie through a resistor to v dd , or program the pin as gp3. an internal weak pull-up resistor is implemented using a transistor (refer to tab l e 1 2- 2 for the pull-up resistor ranges). this will eliminate external rc components usually needed to create a power-on reset. a maximum rise time for v dd is specified. see section 12.0 ?electrical characteristics? for details. when the devices start normal operation (exit the reset condition), device operating parameters (voltage, frequency, temperature,...) must be met to ensure operation. if these conditions are not met, the devices must be held in reset until the operating parameters are met. a simplified block diagram of the on-chip power-on reset circuit is shown in figure 9-2 . the power-on reset circuit and the device reset timer (see section 9.5 ?device reset timer (drt)? ) circuit are closely related. on power-up, the reset latch is set and the drt is reset. the drt timer begins counting once it detects mclr to be high. after the time-out period, which is typically 18 ms, it will reset the reset latch and thus end the on-chip reset signal. a power-up example where mclr is held low is shown in figure 9-3 . v dd is allowed to rise and stabilize before bringing mclr high. the chip will actually come out of reset t drt msec after mclr goes high. in figure 9-4 , the on-chip power-on reset feature is being used (mclr and v dd are tied together or the pin is programmed to be gp3). the v dd is stable before the start-up timer times out and there is no problem in getting a proper reset. however, figure 9-5 depicts a problem situation where v dd rises too slowly. the time between when the drt senses that mclr is high and when mclr and v dd actually reach their full value, is too long. in this situation, when the start-up timer times out, v dd has not reached the v dd (min) value and the chip may not function correctly. for such situations, we recommend that external rc circuits be used to achieve longer por delay times ( figure 9-4 ). for additional information, refer to application notes an522 ?power-up considerations? , (ds00522) and an607 ?power-up trouble shooting? , (ds00000607). table 9-2: reset condition for special registers ? status address: 03h pcl address: 02h power-on reset 00-1 1xxx 1111 1111 mclr reset during normal operation 000u uuuu 1111 1111 mclr reset during sleep 0001 0uuu 1111 1111 wdt reset during sleep 0000 0uuu 1111 1111 wdt reset normal operation 0000 uuuu 1111 1111 wake-up from sleep on pin change 1001 0uuu 1111 1111 wake-up from sleep on comparator change 0101 0uuu 1111 1111 legend: u = unchanged, x = unknown, C = unimplemented bit, read as 0 . gp3/mclr /v pp mclre internal mclr gpwu note: when the devices start normal operation (exit the reset condition), device operating parameters (voltage, frequency, temperature, etc.) must be met to ensure operation. if these conditions are not met, the device must be held in reset until the operating conditions are met. downloaded from: http:///
pic10f200/202/204/206 ds40001239f-page 38 ? 2004-2014 microchip technology inc. figure 9-2: simplified block di agram of on-chip reset circuit figure 9-3: time-out sequ ence on power-up (mclr pulled low) figure 9-4: time-out sequ ence on power-up (mclr tied to v dd ): fast v dd rise time sq r q v dd gp3/mclr /v pp power-up detect por (power-on reset) wdt reset chip reset mclre wake-up on pin change reset start-up timer (10 ? s or 18 ms) wdt time-out pin change sleep mclr reset v dd mclr internal por drt time-out internal reset tdrt v dd mclr internal por drt time-out internal reset tdrt downloaded from: http:///
? 2004-2014 microchip technology inc. ds40001239f-page 39 pic10f200/202/204/206 figure 9-5: time-out sequ ence on power-up (mclr tied to v dd ): slow v dd rise time v dd mclr internal por drt time-out internal reset tdrt v1 note: when v dd rises slowly, the t drt time-out expires long before v dd has reached its final value. in this example, the chip will reset properly if, and only if, v1 ? v dd min. downloaded from: http:///
pic10f200/202/204/206 ds40001239f-page 40 ? 2004-2014 microchip technology inc. 9.5 device reset timer (drt) on the pic10f200/202/204/206 devices, the drt runs any time the device is powered-up. the drt operates on an internal oscillator. the processor is kept in reset as long as the drt is active. the drt delay allows v dd to rise above v dd min. and for the oscillator to stabilize. the on-chip drt keeps the devices in a reset condition for approximately 18 ms after mclr has reached a logic high (v ih mclr ) level. programming gp3/mclr /v pp as mclr and using an external rc network connected to the mclr input is not required in most cases. this allows savings in cost-sensitive and/ or space restricted applications, as well as allowing the use of the gp3/mclr /v pp pin as a general purpose input. the device reset time delays will vary from chip-to- chip due to v dd , temperature and process variation. see ac parameters for details. reset sources are por, mclr , wdt time-out and wake-up on pin change. see section 9.9.2 ?wake-up from sleep? , notes 1, 2 and 3. 9.6 watchdog timer (wdt) the watchdog timer (wdt) is a free running on-chip rc oscillator, which does not require any external components. this rc oscillator is separate from the internal 4 mhz oscillator. this means that the wdt will run even if the main processor clock has been stopped, for example, by execution of a sleep instruction. during normal operation or sleep, a wdt reset or wake-up reset, generates a device reset. the to bit (status<4>) will be cleared upon a watchdog timer reset. the wdt can be permanently disabled by programming the configuration wdte as a 0 (see section 9.1 ?configuration bits? ). refer to the pic10f200/202/204/206 programming specifications to determine how to access the configuration word. 9.6.1 wdt period the wdt has a nominal time-out period of 18 ms, (with no prescaler). if a longer time-out period is desired, a prescaler with a division ratio of up to 1:128 can be assigned to the wdt (under software control) by writing to the option register. thus, a time-out period of a nominal 2.3 seconds can be realized. these periods vary with temperature, v dd and part-to-part process variations (see dc specs). under worst-case conditions (v dd = min., temperature = max., max. wdt prescaler), it may take several seconds before a wdt time-out occurs. 9.6.2 wdt programming considerations the clrwdt instruction clears the wdt and the postscaler, if assigned to the wdt, and prevents it from timing out and generating a device reset. the sleep instruction resets the wdt and the postscaler, if assigned to the wdt. this gives the maximum sleep time before a wdt wake-up reset. table 9-3: drt period oscillator por reset subsequent resets intosc 18 ms (typical) 10 ? s (typical) downloaded from: http:///
? 2004-2014 microchip technology inc. ds40001239f-page 41 pic10f200/202/204/206 figure 9-6: watchdog timer block diagram ( figure 6-5 ) postscaler wdt time-out watchdog time from timer0 clock source wdt enable configuration bit psa postscaler 8-to-1 mux ps<2:0> ( figure 6-4 ) to timer0 01 mu x 1 0 psa mux table 9-4: summary of registers as sociated with the watchdog timer address name bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 value on power-on reset value on all other resets n/a option gpwu gppu t0cs t0se psa ps2 ps1 ps0 1111 1111 1111 1111 legend: shaded boxes = not used by watchdog timer, C = unimplemented, read as 0 , u = unchanged. downloaded from: http:///
pic10f200/202/204/206 ds40001239f-page 42 ? 2004-2014 microchip technology inc. 9.7 time-out sequence, power-down and wake-up from sleep status bits (to , pd , gpwuf, cwuf) the to , pd , gpwuf and cwuf bits in the status register can be tested to determine if a reset condition has been caused by a power-up condition, a mclr, watchdog timer (wdt) reset, wake-up on comparator change or wake-up on pin change. 9.8 reset on brown-out a brown-out reset is a condition where device power (v dd ) dips below its minimum value, but not to zero, and then recovers. the device should be reset in the event of a brown-out. to reset pic10f200/202/204/206 devices when a brown-out reset occurs, external brown-out protection circuits may be built, as shown in figure 9-7 and figure 9-8 . figure 9-7: brown-out protection circuit 1 figure 9-8: brown-out protection circuit 2 table 9-5: to , pd , gpwuf, cwuf status after reset cwuf gpwuf to pd reset caused by 0000 wdt wake-up from sleep 000u wdt time-out (not from sleep) 0010 mclr wake-up from sleep 0011 power-up 00uu mclr not during sleep 0110 wake-up from sleep on pin change 1010 wake-up from sleep on comparator change legend: u = unchanged, x = unknown, C = unimplemented bit, read as 0 , q = value depends on condition. note 1: the to , pd , gpwuf and cwuf bits maintain their status ( u ) until a reset occurs. a low-pulse on the mclr input does not change the to , pd , gpwuf or cwuf status bits. note 1: this circuit will activate reset when v dd goes below vz + 0.7v (where vz = zener voltage). 2: pin must be confirmed as mclr . 33k 10k 40k (1) v dd mclr (2) pic10f20x v dd q1 note 1: this brown-out circuit is less expensive, although less accurate. transistor q1 turns off when v dd is below a certain level such that: 2: pin must be confirmed as mclr . v dd r1 r1 + r2 = 0.7v r2 40k (1) v dd mclr (2) pic10f20x r1 q1 v dd downloaded from: http:///
? 2004-2014 microchip technology inc. ds40001239f-page 43 pic10f200/202/204/206 figure 9-9: brown-out protection circuit 3 9.9 power-down mode (sleep) a device may be powered-down (sleep) and later powered-up (wake-up from sleep). 9.9.1 sleep the power-down mode is entered by executing a sleep instruction. if enabled, the watchdog timer will be cleared but keeps running, the to bit (status<4>) is set, the pd bit (status<3>) is cleared and the oscillator driver is turned off. the i/o ports maintain the status they had before the sleep instruction was executed (driving high, driving low or high-impedance). for lowest current consumption while powered-down, the t0cki input should be at v dd or v ss and the gp3/ mclr /v pp pin must be at a logic high level if mclr is enabled. 9.9.2 wake-up from sleep the device can wake-up from sleep through one of the following events: 1. an external reset input on gp3/mclr /v pp pin, when configured as mclr . 2. a watchdog timer time-out reset (if wdt was enabled). 3. a change on input pin gp0, gp1 or gp3 when wake-up on change is enabled. 4. a comparator output change has occurred when wake-up on comparator change is enabled. these events cause a device reset. the to , pd gpwuf and cwuf bits can be used to determine the cause of device reset. the to bit is cleared if a wdt time-out occurred (and caused wake-up). the pd bit, which is set on power-up, is cleared when sleep is invoked. the gpwuf bit indicates a change in state while in sleep at pins gp0, gp1 or gp3 (since the last file or bit operation on gp port). the cwuf bit indicates a change in the state while in sleep of the comparator output. note: a reset generated by a wdt time-out does not drive the mclr pin low. note: this brown-out protection circuit employs microchip technologys mcp809 microcontroller supervisor. there are seven different trip point selections to accommodate 5v to 3v systems. mclr pic10f20x v dd v dd v ss rst mcp809 v dd bypass capacitor caution: right before entering sleep, read the input pins. when in sleep, wake-up occurs when the values at the pins change from the state they were in at the last reading. if a wake-up on change occurs and the pins are not read before re-entering sleep, a wake-up will occur immediately even if no pins change while in sleep mode. note: the wdt is cleared when the device wakes from sleep, regardless of the wake-up source. downloaded from: http:///
pic10f200/202/204/206 ds40001239f-page 44 ? 2004-2014 microchip technology inc. 9.10 program verification/code protection if the code protection bit has not been programmed, the on-chip program memory can be read out for verification purposes. the first 64 locations and the last location (reset vector) can be read, regardless of the code protection bit setting. 9.11 id locations four memory locations are designated as id locations where the user can store checksum or other code identification numbers. these locations are not accessible during normal execution, but are readable and writable during program/verify. use only the lower four bits of the id locations and always program the upper eight bits as 0 s. 9.12 in-circuit serial programming? the pic10f200/202/204/206 microcontrollers can be serially programmed while in the end application circuit. this is simply done with two lines for clock and data, and three other lines for power, ground and the programming voltage. this allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. this also allows the most recent firmware or a custom firmware, to be programmed. the devices are placed into a program/verify mode by holding the gp1 and gp0 pins low while raising the mclr (v pp ) pin from v il to v ihh (see programming specification). gp1 becomes the programming clock and gp0 becomes the programming data. both gp1 and gp0 are schmitt trigger inputs in this mode. after reset, a 6-bit command is then supplied to the device. depending on the command, 16 bits of program data are then supplied to or from the device, depending if the command was a load or a read. for complete details of serial programming, please refer to the pic10f200/202/204/206 programming specifications. a typical in-circuit serial programming connection is shown in figure 9-10 . figure 9-10: typical in-circuit serial programming? connection external connector signals to n o r m a l connections to n o r m a l connections pic10f20x v dd v ss mclr /v pp gp1 gp0 +5v 0v v pp clk data i/o v dd downloaded from: http:///
? 2004-2014 microchip technology inc. ds40001239f-page 45 pic10f200/202/204/206 10.0 instruction set summary the pic16 instruction set is highly orthogonal and is comprised of three basic categories. byte-oriented operations bit-oriented operations literal and control operations each pic16 instruction is a 12-bit word divided into an opcode , which specifies the instruction type and one or more operands which further specify the operation of the instruction. the formats for each of the categories is presented in figure 10-1 , while the various opcode fields are summarized in tab l e 1 0- 1 . for byte-oriented instructions, f represents a file register designator and d represents a destination designator. the file register designator specifies which file register is to be used by the instruction. the destination designator specifies where the result of the operation is to be placed. if d is 0 , the result is placed in the w register. if d is 1 , the result is placed in the file register specified in the instruction. for bit-oriented instructions, b represents a bit field designator which selects the number of the bit affected by the operation, while f represents the number of the file in which the bit is located. for literal and control operations, k represents an 8 or 9-bit constant or literal value. all instructions are executed within a single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. in this case, the execution takes two instruction cycles. one instruction cycle consists of four oscillator periods. thus, for an oscillator frequency of 4 mhz, the normal instruction execution time is 1 ? s. if a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time is 2 ? s. figure 10-1 shows the three general formats that the instructions can have. all examples in the figure use the following format to represent a hexadecimal number: 0xhhh where h signifies a hexadecimal digit. figure 10-1: general format for instructions table 10-1: opcode field descriptions field description f register file address (0x00 to 0x7f) w working register (accumulator) b bit address within an 8-bit file register k literal field, constant data or label x dont care location (= 0 or 1 ) the assembler will generate code with x = 0 . it is the recommended form of use for compatibility with all microchip software tools. d destination select; d = 0 (store result in w) d = 1 (store result in file register f ) default is d = 1 label label name tos top-of-stack pc program counter wdt watchdog timer counter to time-out bit pd power-down bit dest destination, either the w register or the specified register file location [ ] options ( ) contents ? assigned to < > register bit field ? in the set of italics user defined term (font is courier) byte-oriented file register operations 11 6 5 4 0 d = 0 for destination w opcode d f (file #) d = 1 for destination f f = 5-bit file register address bit-oriented file register operations 11 8 7 5 4 0 opcode b (bit #) f (file #) b = 3-bit address f = 5-bit file register address literal and control operations (except goto ) 11 8 7 0 opcode k (literal) k = 8-bit immediate value literal and control operations C goto instruction 11 9 8 0 opcode k (literal) k = 9-bit immediate value downloaded from: http:///
pic10f200/202/204/206 ds40001239f-page 46 ? 2004-2014 microchip technology inc. table 10-2: instruction set summary mnemonic, operands description cycles 12-bit opcode status affected notes msb lsb addwfandwf clrf clrw comf decf decfsz incf incfsz iorwf movf movwf nop rlf rrf subwf swapf xorwf f, d f, d f f, d f, d f, d f, d f, d f, d f, d f f, d f, d f, d f, d f, d add w and f and w with f clear f clear w complement f decrement f decrement f, skip if 0 increment f increment f, skip if 0 inclusive or w with f move f move w to f no operation rotate left f through carry rotate right f through carry subtract w from f swap f exclusive or w with f 11 1 1 1 1 1 (2) 1 1 (2) 11 1 1 1 1 1 1 1 00010001 0000 0000 0010 0000 0010 0010 0011 0001 0010 0000 0000 0011 0011 0000 0011 0001 11df01df 011f 0100 01df 11df 11df 10df 11df 00df 00df 001f 0000 01df 00df 10df 10df 10df ffffffff ffff 0000 ffff ffff ffff ffff ffff ffff ffff ffff 0000 ffff ffff ffff ffff ffff c, dc, z zz z z z none z none zz none none cc c, dc, z none z 1, 2, 4 2, 4 4 2, 42, 4 2, 4 2, 4 2, 4 2, 4 1, 4 2, 4 2, 4 1, 2, 4 2, 42, 4 bit-oriented file register operations bcfbsf btfsc btfss f, b f, b f, b f, b bit clear f bit set f bit test f, skip if clear bit test f, skip if set 11 1 (2) 1 (2) 01000101 0110 0111 bbbfbbbf bbbf bbbf ffffffff ffff ffff none none none none 2, 42, 4 literal and control operations andlw call clrwdt goto iorlw movlw option retlw sleep tris xorlw kk k k k k f k and literal with w call subroutine clear watchdog timer unconditional branch inclusive or literal with w move literal to w load option register return, place literal in w go into standby mode load tris register exclusive or literal to w 12 1 2 1 1 1 2 1 1 1 11101001 0000 101k 1101 1100 0000 1000 0000 0000 1111 kkkkkkkk 0000 kkkk kkkk kkkk 0000 kkkk 0000 0000 kkkk kkkkkkkk 0100 kkkk kkkk kkkk 0010 kkkk 0011 0fff kkkk z none to , pd none z none none none to , pd none z 13 note 1: the 9th bit of the program counter will be forced to a 0 by any instruction that writes to the pc except for goto . see section 4.7 ?program counter? . 2: when an i/o register is modified as a function of itself (e.g. movf portb, 1 ), the value used will be that value present on the pins themselves. for example, if the data latch is 1 for a pin configured as input and is driven low by an external device, the data will be written back with a 0 . 3: the instruction tris f , where f = 6, causes the contents of the w register to be written to the tri-state latches of portb. a 1 forces the pin to a high-impedance state and disables the output buffers. 4: if this instruction is executed on the tmr0 register (and where applicable, d = 1 ), the prescaler will be cleared (if assigned to tmr0). downloaded from: http:///
? 2004-2014 microchip technology inc. ds40001239f-page 47 pic10f200/202/204/206 addwf add w and f syntax: [ label ] addwf f,d operands: 0 ? f ? 31 d ??? 0 ? 1 ? operation: (w) + (f) ? (dest) status affected: c, dc, z description: add the contents of the w register and register f. if d is 0 , the result is stored in the w register. if d is 1 , the result is stored back in register f. andlw and literal with w syntax: [ label ] andlw k operands: 0 ? k ? 255 operation: (w).and. (k) ? (w) status affected: z description: the contents of the w register are anded with the 8-bit literal k. the result is placed in the w register. andwf and w with f syntax: [ label ] andwf f,d operands: 0 ? f ? 31 d ?? [ 0 , 1 ] operation: (w) .and. (f) ? (dest) status affected: z description: the contents of the w register are anded with register f. if d is 0 , the result is stored in the w register. if d is 1 , the result is stored back in register f. bcf bit clear f syntax: [ label ] bcf f,b operands: 0 ? f ? 31 0 ? b ? 7 operation: 0 ? (f) status affected: none description: bit b in register f is cleared. bsf bit set f syntax: [ label ] bsf f,b operands: 0 ? f ? 31 0 ? b ? 7 operation: 1 ? (f) status affected: none description: bit b in register f is set. btfsc bit test f, skip if clear syntax: [ label ] btfsc f,b operands: 0 ? f ? 31 0 ? b ? 7 operation: skip if (f) = 0 status affected: none description: if bit b in register f is 0 , then the next instruction is skipped. if bit b is 0 , then the next instruction fetched during the current instruction execution is discarded, and a nop is executed instead, making this a 2-cycle instruction. downloaded from: http:///
pic10f200/202/204/206 ds40001239f-page 48 ? 2004-2014 microchip technology inc. btfss bit test f, skip if set syntax: [ label ] btfss f,b operands: 0 ? f ? 31 0 ? b < 7 operation: skip if (f) = 1 status affected: none description: if bit b in register f is 1 , then the next instruction is skipped. if bit b is 1 , then the next instruc- tion fetched during the current instruction execution, is discarded and a nop is executed instead, making this a 2-cycle instruction. call subroutine call syntax: [ label ] call k operands: 0 ? k ? 255 operation: (pc) + 1 ? top-of-stack; k ? pc<7:0>; (status<6:5>) ? pc<10:9>; 0 ? pc<8> status affected: none description: subroutine call. first, return address (pc + 1) is pushed onto the stack. the 8-bit immediate address is loaded into pc bits <7:0>. the upper bits pc<10:9> are loaded from status<6:5>, pc<8> is cleared. call is a 2-cycle instruction. clrf clear f syntax: [ label ] clrf f operands: 0 ? f ? 31 operation: 00h ? (f); 1 ? z status affected: z description: the contents of register f are cleared and the z bit is set. clrw clear w syntax: [ label ] clrw operands: none operation: 00h ? (w); 1 ? z status affected: z description: the w register is cleared. zero bit (z) is set. clrwdt clear watchdog timer syntax: [ label ] clrwdt operands: none operation: 00h ? wdt; 0 ? wdt prescaler (if assigned); 1 ? to; 1 ? pd status affected: to , pd description: the clrwdt instruction resets the wdt. it also resets the prescaler, if the prescaler is assigned to the wdt and not timer0. status bits to and pd are set. comf complement f syntax: [ label ] comf f,d operands: 0 ? f ? 31 d ? [ 0 , 1 ] operation: (f ) ? (dest) status affected: z description: the contents of register f are complemented. if d is 0 , the result is stored in the w register. if d is 1 , the result is stored back in register f. downloaded from: http:///
? 2004-2014 microchip technology inc. ds40001239f-page 49 pic10f200/202/204/206 decf decrement f syntax: [ label ] decf f,d operands: 0 ? f ? 31 d ? [ 0 , 1 ] operation: (f) C 1 ? (dest) status affected: z description: decrement register f. if d is 0 , the result is stored in the w register. if d is 1 , the result is stored back in register f. decfsz decrement f, skip if 0 syntax: [ label ] decfsz f,d operands: 0 ? f ? 31 d ? [ 0 , 1 ] operation: (f) C 1 ? d; skip if result = 0 status affected: none description: the contents of register f are decremented. if d is 0 , the result is placed in the w register. if d is 1 , the result is placed back in register f. if the result is 0 , the next instruc- tion, which is already fetched, is discarded and a nop is executed instead making it a 2-cycle instruc- tion. goto unconditional branch syntax: [ label ] goto k operands: 0 ? k ? 511 operation: k ? pc<8:0>; status<6:5> ? pc<10:9> status affected: none description: goto is an unconditional branch. the 9-bit immediate value is loaded into pc bits <8:0>. the upper bits of pc are loaded from status<6:5>. goto is a 2-cycle instruction. incf increment f syntax: [ label ] incf f,d operands: 0 ? f ? 31 d ? [ 0 , 1 ] operation: (f) + 1 ? (dest) status affected: z description: the contents of register f are incremented. if d is 0 , the result is placed in the w register. if d is 1 , the result is placed back in register f. incfsz increment f, skip if 0 syntax: [ label ] incfsz f,d operands: 0 ? f ? 31 d ? [ 0 , 1 ] operation: (f) + 1 ? (dest), skip if result = 0 status affected: none description: the contents of register f are incremented. if d is 0 , the result is placed in the w register. if d is 1 , the result is placed back in register f. if the result is 0 , then the next instruction, which is already fetched, is discarded and a nop is executed instead making it a 2-cycle instruction. iorlw inclusive or literal with w syntax: [ label ] iorlw k operands: 0 ? k ? 255 operation: (w) .or. (k) ? (w) status affected: z description: the contents of the w register are ored with the 8-bit literal k. the result is placed in the w register. downloaded from: http:///
pic10f200/202/204/206 ds40001239f-page 50 ? 2004-2014 microchip technology inc. iorwf inclusive or w with f syntax: [ label ] iorwf f,d operands: 0 ? f ? 31 d ? [ 0 , 1 ] operation: (w).or. (f) ? (dest) status affected: z description: inclusive or the w register with register f. if d is 0 , the result is placed in the w register. if d is 1 , the result is placed back in register f. movf move f syntax: [ label ] movf f,d operands: 0 ? f ? 31 d ? [ 0 , 1 ] operation: (f) ? (dest) status affected: z description: the contents of register f are moved to destination d. if d is 0 , destination is the w register. if d is 1 , the destination is file register f. d = 1 is useful as a test of a file register, since status flag z is affected. movlw move literal to w syntax: [ label ] movlw k operands: 0 ? k ? 255 operation: k ? (w) status affected: none description: the 8-bit literal k is loaded into the w register. the dont cares will assembled as 0 s. movwf move w to f syntax: [ label ] movwf f operands: 0 ? f ? 31 operation: (w) ? (f) status affected: none description: move data from the w register to register f. nop no operation syntax: [ label ] nop operands: none operation: no operation status affected: none description: no operation. option load option register syntax: [ label ] option operands: none operation: (w) ? option status affected: none description: the content of the w register is loaded into the option register. downloaded from: http:///
? 2004-2014 microchip technology inc. ds40001239f-page 51 pic10f200/202/204/206 retlw return with literal in w syntax: [ label ] retlw k operands: 0 ? k ? 255 operation: k ? (w); tos ? pc status affected: none description: the w register is loaded with the 8-bit literal k. the program counter is loaded from the top of the stack (the return address). this is a 2-cycle instruction. rlf rotate left f through carry syntax: [ label ] rlf f,d operands: 0 ? f ? 31 d ? [ 0 , 1 ] operation: see description below status affected: c description: the contents of register f are rotated one bit to the left through the carry flag. if d is 0 , the result is placed in the w register. if d is 1 , the result is stored back in register f. rrf rotate right f through carry syntax: [ label ] rrf f,d operands: 0 ? f ? 31 d ? [ 0 , 1 ] operation: see description below status affected: c description: the contents of register f are rotated one bit to the right through the carry flag. if d is 0 , the result is placed in the w register. if d is 1 , the result is placed back in register f. c register f c register f sleep enter sleep mode syntax: [ label ] sleep operands: none operation: 00h ? wdt; 0 ? wdt prescaler; 1 ? to ; 0 ? pd status affected: to , pd, rbwuf description: time-out status bit (to ) is set. the power-down status bit (pd ) is cleared. rbwuf is unaffected. the wdt and its prescaler are cleared. the processor is put into sleep mode with the oscillator stopped. see section 9.9 ?power-down mode (sleep)? for more details. subwf subtract w from f syntax: [ label ] subwf f,d operands: 0 ?? f ?? 31 d ? [ 0 , 1 ] operation: (f) C (w) ??? dest) status affected: c, dc, z description: subtract (2s complement method) the w register from register f. if d is 0 , the result is stored in the w register. if d is 1 , the result is stored back in register f. swapf swap nibbles in f syntax: [ label ] swapf f,d operands: 0 ? f ? 31 d ? [ 0 , 1 ] operation: (f<3:0>) ? (dest<7:4>); (f<7:4>) ? (dest<3:0>) status affected: none description: the upper and lower nibbles of register f are exchanged. if d is 0 , the result is placed in w register. if d is 1 , the result is placed in register f. downloaded from: http:///
pic10f200/202/204/206 ds40001239f-page 52 ? 2004-2014 microchip technology inc. tris load tris register syntax: [ label ] tris f operands: f = 6 operation: (w) ? tris register f status affected: none description: tris register f (f = 6 or 7) is loaded with the contents of the w register xorlw exclusive or literal with w syntax: [ label ]xorlw k operands: 0 ?? k ?? 255 operation: (w) .xor. k ??? w) status affected: z description: the contents of the w register are xored with the 8-bit literal k. the result is placed in the w register. xorwf exclusive or w with f syntax: [ label ] xorwf f,d operands: 0 ? f ? 31 d ? [ 0 , 1 ] operation: (w) .xor. (f) ??? dest) status affected: z description: exclusive or the contents of the w register with register f. if d is 0 , the result is stored in the w register. if d is 1 , the result is stored back in register f. downloaded from: http:///
? 2004-2014 microchip technology inc. ds40001239f-page 53 pic10f200/202/204/206 11.0 development support the pic ? microcontrollers (mcu) and dspic ? digital signal controllers (dsc) are supported with a full range of software and hardware development tools: integrated development environment - mplab ? x ide software compilers/assemblers/linkers - mplab xc compiler - mpasm tm assembler -mplink tm object linker/ mplib tm object librarian - mplab assembler/linker/librarian for various device families simulators - mplab x sim software simulator emulators - mplab real ice? in-circuit emulator in-circuit debuggers/programmers - mplab icd 3 - pickit? 3 device programmers - mplab pm3 device programmer low-cost demonstration/development boards, evaluation kits and starter kits third-party development tools 11.1 mplab x integrated development environment software the mplab x ide is a single, unified graphical user interface for microchip and third-party software, and hardware development tool that runs on windows ? , linux and mac os ? x. based on the netbeans ide, mplab x ide is an entirely new ide with a host of free software components and plug-ins for high- performance application development and debugging. moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface. with complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, mplab x ide is flexible and friendly enough for new users. with the ability to support multiple tools on multiple projects with simultaneous debugging, mplab x ide is also suitable for the needs of experienced users. feature-rich editor: color syntax highlighting smart code completion makes suggestions and provides hints as you type automatic code formatting based on user-defined rules live parsing user-friendly, customizable interface: fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc. call graph window project-based workspaces: multiple projects multiple tools multiple configurations simultaneous debugging sessions file history and bug tracking: local file history feature built-in support for bugzilla issue tracker downloaded from: http:///
pic10f200/202/204/206 ds40001239f-page 54 ? 2004-2014 microchip technology inc. 11.2 mplab xc compilers the mplab xc compilers are complete ansi c compilers for all of microchips 8, 16, and 32-bit mcu and dsc devices. these compilers provide powerful integration capabilities, superior code optimization and ease of use. mplab xc compilers run on windows, linux or mac os x. for easy source level debugging, the compilers provide debug information that is optimized to the mplab x ide. the free mplab xc compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications. mplab xc compilers include an assembler, linker and utilities. the assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. mplab xc compiler uses the assembler to produce its object file. notable features of the assembler include: support for the entire device instruction set support for fixed-point and floating-point data command-line interface rich directive set flexible macro language mplab x ide compatibility 11.3 mpasm assembler the mpasm assembler is a full-featured, universal macro assembler for pic10/12/16/18 mcus. the mpasm assembler generates relocatable object files for the mplink object linker, intel ? standard hex files, map files to detail memory usage and symbol reference, absolute lst files that contain source lines and generated machine code, and coff files for debugging. the mpasm assembler features include: integration into mplab x ide projects user-defined macros to streamline assembly code conditional assembly for multipurpose source files directives that allow complete control over the assembly process 11.4 mplink object linker/ mplib object librarian the mplink object linker combines relocatable objects created by the mpasm assembler. it can link relocatable objects from precompiled libraries, using directives from a linker script. the mplib object librarian manages the creation and modification of library files of precompiled code. when a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. this allows large libraries to be used efficiently in many different applications. the object linker/library features include: efficient linking of single libraries instead of many smaller files enhanced code maintainability by grouping related modules together flexible creation of libraries with easy module listing, replacement, deletion and extraction 11.5 mplab assembler, linker and librarian for various device families mplab assembler produces relocatable machine code from symbolic assembly language for pic24, pic32 and dspic dsc devices. mplab xc compiler uses the assembler to produce its object file. the assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. notable features of the assembler include: support for the entire device instruction set support for fixed-point and floating-point data command-line interface rich directive set flexible macro language mplab x ide compatibility downloaded from: http:///
? 2004-2014 microchip technology inc. ds40001239f-page 55 pic10f200/202/204/206 11.6 mplab x sim software simulator the mplab x sim software simulator allows code development in a pc-hosted environment by simulating the pic mcus and dspic dscs on an instruction level. on any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. registers can be logged to files for further run-time analysis. the trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on i/o, most peripherals and internal registers. the mplab x sim software simulator fully supports symbolic debugging using the mplab xc compilers, and the mpasm and mplab assemblers. the software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool. 11.7 mplab real ice in-circuit emulator system the mplab real ice in-circuit emulator system is microchips next generation high-speed emulator for microchip flash dsc and mcu devices. it debugs and programs all 8, 16 and 32-bit mcu, and dsc devices with the easy-to-use, powerful graphical user interface of the mplab x ide. the emulator is connected to the design engineers pc using a high-speed usb 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (rj-11) or with the new high-speed, noise tolerant, low- voltage differential signal (lvds) interconnection (cat5). the emulator is field upgradable through future firmware downloads in mplab x ide. mplab real ice offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables. 11.8 mplab icd 3 in-circuit debugger system the mplab icd 3 in-circuit debugger system is microchips most cost-effective, high-speed hardware debugger/programmer for microchip flash dsc and mcu devices. it debugs and programs pic flash microcontrollers and dspic dscs with the powerful, yet easy-to-use graphical user interface of the mplab ide. the mplab icd 3 in-circuit debugger probe is connected to the design engineers pc using a high- speed usb 2.0 interface and is connected to the target with a connector compatible with the mplab icd 2 or mplab real ice systems (rj-11). mplab icd 3 supports all mplab icd 2 headers. 11.9 pickit 3 in-circuit debugger/ programmer the mplab pickit 3 allows debugging and programming of pic and dspic flash microcontrollers at a most affordable price point using the powerful graphical user interface of the mplab ide. the mplab pickit 3 is connected to the design engineers pc using a full-speed usb interface and can be connected to the target via a microchip debug (rj-11) connector (compatible with mplab icd 3 and mplab real ice). the connector uses two device i/o pins and the reset line to implement in-circuit debugging and in-circuit serial programming? (icsp?). 11.10 mplab pm3 device programmer the mplab pm3 device programmer is a universal, ce compliant device programmer with programmable voltage verification at v ddmin and v ddmax for maximum reliability. it features a large lcd display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. the icsp cable assembly is included as a standard item. in stand-alone mode, the mplab pm3 device programmer can read, verify and program pic devices without a pc connection. it can also set code protection in this mode. the mplab pm3 connects to the host pc via an rs-232 or usb cable. the mplab pm3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an mmc card for file storage and data applications. downloaded from: http:///
pic10f200/202/204/206 ds40001239f-page 56 ? 2004-2014 microchip technology inc. 11.11 demonstration/development boards, evaluation kits, and starter kits a wide variety of demonstration, development and evaluation boards for various pic mcus and dspic dscs allows quick application development on fully functional systems. most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification. the boards support a variety of features, including leds, temperature sensors, switches, speakers, rs-232 interfaces, lcd displays, potentiometers and additional eeprom memory. the demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications. in addition to the picdem? and dspicdem? demonstration/development board series of circuits, microchip has a line of evaluation kits and demonstration software for analog filter design, k ee l oq ? security ics, can, irda ? , powersmart battery management, seeval ? evaluation system, sigma-delta adc, flow rate sensing, plus many more. also available are starter kits that contain everything needed to experience the specified device. this usually includes a single application and debug capability, all on one board. check the microchip web page ( www.microchip.com ) for the complete list of demonstration, development and evaluation kits. 11.12 third-party development tools microchip also offers a great collection of tools from third-party vendors. these tools are carefully selected to offer good value and unique functionality. device programmers and gang programmers from companies, such as softlog and ccs software tools from companies, such as gimpel and trace systems protocol analyzers from companies, such as saleae and total phase demonstration boards from companies, such as mikroelektronika, digilent ? and olimex embedded ethernet solutions from companies, such as ez web lynx, wiznet and iplogika ? downloaded from: http:///
? 2004-2014 microchip technology inc. ds40001239f-page 57 pic10f200/202/204/206 12.0 electrical characteristics absolute maximum ratings (?) ambient temperature under bias................................................................................................. ......... -40c to +125c storage temperature ............................................................................................................ ................ -65c to +150c voltage on v dd with respect to v ss ............................................................................................................... 0 to +6.5v voltage on mclr with respect to v ss ..........................................................................................................0 to +13.5v voltage on all other pins with respect to v ss ............................................................................... -0.3v to (v dd + 0.3v) total power dissipation (1) ............................................................................................................................... ... 800 mw max. current out of v ss pin ........................................................................................................................... ....... 80 ma max. current into v dd pin ........................................................................................................................... .......... 80 ma input clamp current, i ik (v i < 0 or v i > v dd ) ???????????????????????????????????????????????????????????????????????????????????????????????????? ???????????????? 20 ma output clamp current, i ok (v o < 0 or v o > v dd ) ???????????????????????????????????????????????????????????????????????????????????????????????????? ???????? 20 ma max. output current sunk by any i/o pin ........................................................................................ ...................... 25 ma max. output current sourced by any i/o pin ..................................................................................... .................... 25 ma max. output current sourced by i/o port ....................................................................................... ....................... 75 ma max. output current sunk by i/o port .......................................................................................... ......................... 75 ma note 1: power dissipation is calculated as follows: p dis = v dd x {i dd C ? i oh } + ? {(v dd C v oh ) x i oh } + ? (v ol x i ol ) ? notice: stresses above those listed under absolute maximum ratings may cause permanent damage to the device. this is a stress rating only and functional operation of the devi ce at those or any other conditions above those indicated in the operation listings of this specification is not implied. exposure to maximum rating conditions for extended periods may affect device reliability. downloaded from: http:///
pic10f200/202/204/206 ds40001239f-page 58 ? 2004-2014 microchip technology inc. figure 12-1: pic10f200/202/204/206 voltage-frequency graph, -40 ? c ? t a ? +125 ? c 6.02.5 4.03.0 0 3.5 4.5 5.0 5.5 41 0 frequency (mhz) v dd 20 (volts) 25 2.0 downloaded from: http:///
? 2004-2014 microchip technology inc. ds40001239f-page 59 pic10f200/202/204/206 12.1 dc characteristics: pic10f200/202/204/206 (industrial) dc characteristics standard operating conditions (unless otherwise specified) operating temperature -40c ? t a ? +85c (industrial) param. no. sym. characteristic min. typ. (1) max. units conditions d001 v dd supply voltage 2.0 5.5 v see figure 12-1 d002 v dr ram data retention voltage (2) 1.5* v device in sleep mode d003 v por v dd start voltage to ensure power-on reset v s s v d004 s vdd v dd rise rate to ensure power-on reset 0.05* v/ms i dd supply current (3) d010 175 0.63 275 1.1 ? a ma v dd = 2.0v v dd = 5.0v i pd power-down current (4) d020 0.1 0.35 1.2 2.4 ? a ? a v dd = 2.0v v dd = 5.0v i wdt wdt current (5) d022 1.0 7 3 16 ? a ? a v dd = 2.0v v dd = 5.0v i cmp comparator current (5) d023 1244 2380 ? a ? a v dd = 2.0v v dd = 5.0v i vref internal reference current (5,6) d024 85 175 115 195 ? a ? a v dd = 2.0v v dd = 5.0v * these parameters are characterized but not tested. note 1: data in the typical (typ.) column is based on characterization results at 25 ? c. this data is for design guidance only and is not tested. 2: this is the limit to which v dd can be lowered in sleep mode without losing ram data. 3: the supply current is mainly a function of the operating voltage and frequency. other factors such as bu s loading, bus rate, internal code execution pattern and temperature also have an impact on the current consumption. a) the test conditions for all i dd measurements in active operation mode are: all i/o pins tri-stated, pulled to v ss , t0cki = v dd , mclr = v dd ; wdt enabled/disabled as specified. b) for standby current measurements, the conditions are the same, except that the device is in sleep mode. 4: power-down current is measured with the part in sleep mode, with all i/o pins in high-impedance state and tied to v dd or v ss . 5: the peripheral current is the sum of the base i dd or i pd and the additional current consumed when this peripheral is enabled. 6: measured with the comparator enabled. downloaded from: http:///
pic10f200/202/204/206 ds40001239f-page 60 ? 2004-2014 microchip technology inc. 12.2 dc characteristics: pic10f200/202/204/206 (extended) dc characteristics standard operating conditions (unless otherwise specified) operating temperature -40c ? t a ? +125c (extended) param. no. sym. characteristic min. typ. (1) max. units conditions d001 v dd supply voltage 2.0 5.5 v see figure 12-1 d002 v dr ram data retention voltage (2) 1.5* v device in sleep mode d003 v por v dd start voltage to ensure power-on reset v s s v d004 s vdd v dd rise rate to ensure power-on reset 0.05* v/ms i dd supply current (3) d010 175 0.63 275 1.1 ? a ma v dd = 2.0v v dd = 5.0v i pd power-down current (4) d020 0.1 0.35 9 15 ? a ? a v dd = 2.0v v dd = 5.0v i wdt wdt current (5) d022 1.0 7 1822 ? a ? a v dd = 2.0v v dd = 5.0v i cmp comparator current (5) d023 1242 2785 ? a ? a v dd = 2.0v v dd = 5.0v vref internal reference current (5,6) d024 85 175 120 200 ? a ? a v dd = 2.0v v dd = 5.0v * these parameters are characterized but not tested. note 1: data in the typical (typ.) column is based on characterization results at 25 ? c. this data is for design guidance only and is not tested. 2: this is the limit to which v dd can be lowered in sleep mode without losing ram data. 3: the supply current is mainly a function of the operating voltage and frequency. other factors such as bus loading, bus rate, internal code execution pattern and temperature also have an impact on the current consumption. a) the test conditions for all i dd measurements in active operation mode are: all i/o pins tri-stated, pulled to v ss , t0cki = v dd , mclr = v dd ; wdt enabled/disabled as specified. b) for standby current measurements, the conditions are the same, except that the device is in sleep mode. 4: power-down current is measured with the part in sleep mode, with all i/o pins in high-impedance state and tied to v dd or v ss . 5: the peripheral current is the sum of the base i dd or i pd and the additional current consumed when this peripheral is enabled. 6: measured with the comparator enabled. downloaded from: http:///
? 2004-2014 microchip technology inc. ds40001239f-page 61 pic10f200/202/204/206 12.3 dc characteristics: pic10f200/202/204/206 (industrial, extended) dc characteristics standard operating conditions (unless otherwise specified) operating temperature -40c ? t a ? +85c (industrial) -40c ? t a ? +125c (extended) operating voltage v dd range as described in dc specification param. no. sym. characteristic min. typ.? max. units conditions v il input low voltage i/o ports: d030 with ttl buffer vss 0.8 v for all 4.5v ? v dd ?? 5.5v d030a vss 0.15 v dd v d031 with schmitt trigger buffer vss 0.2 v dd v d032 mclr , t0cki vss 0.2 v dd v v ih input high voltage i/o ports: d040 with ttl buffer 2.0 v dd v4.5v ? v dd ?? 5.5v d040a 0.25 v dd + 0.8 v dd votherwise d041 with schmitt trigger buffer 0.8v dd v dd v for entire v dd range d042 mclr , t0cki 0.8v dd v dd v d070 i pur gpio weak pull-up current (3) 50 250 400 ? av dd = 5v, v pin = v ss i il input leakage current (1, 2) d060 i/o ports 0.1 1 ? avss ?? v pin ?? v dd , pin at high-impedance d061 gp3/mclr (3) 0 . 7 5 ? avss ?? v pin ?? v dd output low voltage d080 i/o ports 0.6 v i ol = 8.5 ma, v dd = 4.5v, -40 ? c to +85 ? c d080a 0.6 v i ol = 7.0 ma, v dd = 4.5v, -40 ? c to +125 ? c output high voltage d090 i/o ports (2) v dd C 0.7 v i oh = -3.0 ma, v dd = 4.5v, -40 ? c to +85 ? c d090a v dd C 0.7 v i oh = -2.5 ma, v dd = 4.5v, -40 ? c to +125 ? c capacitive loading specs on output pins d101 all i/o pins 50* pf ? data in typ. column is at 5v, 25 ? c unless otherwise stated. these parameters are for design guidance only and are not tested. * these parameters are for design guidance only and are not tested. note 1: the leakage current on the mclr pin is strongly dependent on the applied voltage level. the specified levels represent normal operating conditions. higher leakage current may be measured at different input voltages. 2: negative current is defined as coming out of the pin. 3: this specification applies when gp3/mclr is configured as an input with pull-up disabled. the leakage current of the mclr circuit is higher than the standard i/o logic. downloaded from: http:///
pic10f200/202/204/206 ds40001239f-page 62 ? 2004-2014 microchip technology inc. table 12-1: comparator specifications standard operating conditions (unless otherwise stated) operating temperature -40c ?? t a ?? +125c param. no. sym. characteristics min. typ.? max. units comments d300 v os input offset voltage ? 5.0 ? 10 mv (v dd - 1.5)/2 d301 v cm input common mode voltage 0 v dd C1.5* v d302 c mrr common mode rejection ratio 55* db d303* t rt response time falling 150 600 ns (note 1) rising 200 1000 ns d304* t mc 2 co v comparator mode change to output valid 10* ? s d305 v ivrf internal reference voltage 0.55 0.6 0.65 v 2.0v ? v dd ? 5.5v -40c ? t a ? 125c (extended) * these parameters are characterized but not tested. ? data in typ. column is at 5v, 25c unless otherwise stated. these parameters are for design guidance only and are not tested. note 1: response time is measured with one comparator input at (v dd - 1.5)/2 - 100 mv to (v dd -1.5)/2+20mv. table 12-2: pull-up resistor ranges v dd (volts) temperature ( ? c) min. typ. max. units gp0/gp1 2.0 -40 73k 105k 186k ? 25 73k 113k 187k ? 85 82k 123k 190k ? 125 86k 132k 190k ? 5.5 -40 15k 21k 33k ? 25 15k 22k 34k ? 85 19k 26k 35k ? 125 23k 29k 35k ? gp3 2.0 -40 63k 81k 96k ? 25 77k 93k 116k ? 85 82k 96k 116k ? 125 86k 100k 119k ? 5.5 -40 16k 20k 22k ? 25 16k 21k 23k ? 85 24k 25k 28k ? 125 26k 27k 29k ? downloaded from: http:///
? 2004-2014 microchip technology inc. ds40001239f-page 63 pic10f200/202/204/206 12.4 timing parameter symbology and load conditions ? pic10f200/202/204/206 the timing parameter symbols have been created following one of the following formats: figure 12-2: load conditions ? pic10f200/202/204/206 1. tpps2pps 2. tpps t f frequency t time lowercase subscripts (pp) and their meanings: pp 2t o m cm c l r ck clkout osc oscillator cy cycle time t0 t0cki drt device reset timer wdt watchdog timer io i/o port wdt watchdog timer uppercase letters and their meanings: s ff a l l pp e r i o d hh i g h rr i s e i invalid (high-impedance) v valid l low z high-impedance c l v ss pin legend: c l = 50 pf for all pins downloaded from: http:///
pic10f200/202/204/206 ds40001239f-page 64 ? 2004-2014 microchip technology inc. figure 12-3: reset, watchdog timer and device reset timer timing ? pic10f200/202/204/206 table 12-3: calibrated internal rc frequencies ? pic10f200/202/204/206 ac characteristics standard operating conditions (unless otherwise specified) operating temperature -40 ? c ? t a ? +85 ? c (industrial), -40 ? c ? t a ? +125 ? c (extended) operating voltage v dd range is described in section 12.1 ?dc characteristics: pic10f200/202/204/206 (industrial)? param. no. sym. characteristic freq. tolerance min. typ.? max. units conditions f10 f osc internal calibrated intosc frequency (1,2) ?? 1% 3.96 4.00 4.04 mhz v dd =3.5v @ 25 ? c ?? 2% 3.92 4.00 4.08 mhz 2.5v ?? v dd ? 5.5v 0 ? c ? t a ? +85 ? c (industrial) ?? 5% 3.80 4.00 4.20 mhz 2.0v ?? v dd ? 5.5v -40 ? c ? t a ? +85 ? c (industrial) -40 ? c ? t a ? +125 ? c (extended) * these parameters are characterized but not tested. ? data in the typical (typ.) column is at 5v, 25 ? c unless otherwise stated. these parameters are for design guidance only and are not tested. note 1: to ensure these oscillator frequency tolerances, v dd and v ss must be capacitively decoupled as close to the device as possible. 0.1 ? f and 0.01 ? f values in parallel are recommended. 2: under stable v dd conditions. v dd mclr internal por drt timeout (2) internal reset watchdog timer reset 32 31 34 i/o pin (1) 32 32 34 30 note 1: i/o pins must be taken out of high-impedance mode by enabling the output drivers in software. 2: runs on por only. downloaded from: http:///
? 2004-2014 microchip technology inc. ds40001239f-page 65 pic10f200/202/204/206 figure 12-4: timer0 clock timings ? pic10f200/202/204/206 table 12-4: reset, watchdog timer and device reset timer ? pic10f200/202/204/206 ac characteristics standard operating conditions (unless otherwise specified) operating temperature -40 ? c ? t a ? +85 ? c (industrial) -40 ? c ? t a ? +125 ? c (extended) operating voltage v dd range is described in section 12.1 ?dc characteristics: pic10f200/202/204/206 (industrial)? param. no. sym. characteristic min. typ. (1) max. units conditions 30 t mc l mclr pulse width (low) 2* 5* ? s ? s v dd = 5v, -40c to +85c v dd = 5.0v 31 t wdt watchdog timer time-out period (no prescaler) 1010 1616 2931 msms v dd = 5.0v (industrial) v dd = 5.0v (extended) 32 t drt device reset timer period (standard) 1010 1616 2931 msms v dd = 5.0v (industrial) v dd = 5.0v (extended) 34 t ioz i/o high-impedance from mclr low 2 * ? s * these parameters are characterized but not tested. note 1: data in the typical (typ.) column is at 5v, 25 ? c unless otherwise stated. these parameters are for design guidance only and are not tested. t0cki 40 41 42 table 12-5: timer0 clock requirements ? pic10f200/202/204/206 ac characteristics standard operating conditions (unless otherwise specified) operating temperature -40 ? c ? t a ? +85 ? c (industrial) -40 ? c ? t a ? +125 ? c (extended) operating voltage v dd range is described in section 12.1 ?dc characteristics: pic10f200/202/204/206 (industrial)? . param. no. sym. characteristic min. typ. (1) max. units conditions 40 tt0h t0cki high pulse width no prescaler 0.5 t cy + 20* ns with prescaler 10* ns 41 tt0l t0cki low pulse width no prescaler 0.5 t cy + 20* ns with prescaler 10* ns 42 tt0p t0cki period 20 or ns whichever is greater. n = prescale value (1, 2, 4,..., 256) * these parameters are characterized but not tested. note 1: data in the typical (typ.) column is at 5v, 25c unless otherwise stated. these parameters are for design guidance only and are not tested. t cy 40 ? + n ------------------------- - downloaded from: http:///
pic10f200/202/204/206 ds40001239f-page 66 ? 2004-2014 microchip technology inc. table 12-6: thermal considerations standard operating conditions (unless otherwise specified) param. no. sym. characteristic typ. units conditions th01 ? ja thermal resistance junction to ambient 60 ? c/w 6-pin sot-23 package 80 ? c/w 8-pin pdip package 90 ? c/w 8-pin dfn package th02 ? jc thermal resistance junction to case 31.4 ? c/w 6-pin sot-23 package 24 ? c/w 8-pin pdip package 24 ? c/w 8-pin dfn package th03 t jmax maximum junction temperature 150 ? c th04 pd power dissipation w pd = p internal + p i / o th05 p internal internal power dissipation w p internal = i dd x v dd (1) th06 p i / o i/o power dissipation w p i / o = ? (i ol * v ol ) + ? (i oh * (v dd - v oh )) th07 p der derated power w p der = pd max (t j - t a )/ ? ja (2) note 1: i dd is current to run the chip alone without driving any load on the output pins. 2: t a = ambient temperature; t j = junction temperature. downloaded from: http:///
? 2004-2014 microchip technology inc. ds40001239f-page 67 pic10f200/202/204/206 13.0 dc and ac characteristics graphs and tables the graphs and tables provided in this section are for design guidance and are not tested . in some graphs or tables, the data presented are outside specified operating range (i.e., outside specified v dd range). this is for information only and devices are ensured to operate properly only within the specified range. ? typical? represents the mean of the distribution at 25 ? c. ?maximum?, ?max.?, ?minimum? or ?min.? represents (mean + 3 ? ) or (mean - 3 ? ) respectively, where ? is a standard deviation, over each temperature range. figure 13-1: i dd vs. v dd over f osc note: the graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. the performance characteristics listed herein are not tested or guaranteed. in some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range. xt mode 0 200 400 600 800 1,000 1,200 1,400 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 v dd (v) i dd ( ? a) typical: statistical mean @25c maximum: mean (worst-case temp) + 3 ? (-40c to 125c) 4 mhz 4 mhz maximum typical downloaded from: http:///
pic10f200/202/204/206 ds40001239f-page 68 ? 2004-2014 microchip technology inc. figure 13-2: typical i pd vs. v dd (sleep mode, all peripherals disabled) figure 13-3: maximum i pd vs. v dd (sleep mode, all peripherals disabled) typical (sleep mode all peripherals disabled) 0.0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 v dd (v) i pd ( ? a) typical: statistical mean @25c maximum: mean (worst-case temp) + 3 ? (-40c to 125c) maximum (sleep mode all peripherals disabled) max. 125c max. 85c 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 2 . 02 . 5 3 . 03 . 5 4 . 04 . 5 5 . 05 . 5 v dd (v) i pd ( ? a) typical: statistical mean @25c maximum: mean (worst-case temp) + 3 ? (-40c to 125c) downloaded from: http:///
? 2004-2014 microchip technology inc. ds40001239f-page 69 pic10f200/202/204/206 figure 13-4: comparator i pd vs. v dd (comparator enabled) figure 13-5: typical wdt i pd vs. v dd 0 20 40 60 80 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 v dd (v) i pd ( ? a) typical: statistical mean @25c maximum: mean (worst-case temp) + 3 ? (-40c to 125c) typical maximum 0 1 2 3 4 5 6 7 8 9 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 v dd (v) i pd ( ? a) typical: statistical mean @25c maximum: mean (worst-case temp) + 3 ? (-40c to 125c) downloaded from: http:///
pic10f200/202/204/206 ds40001239f-page 70 ? 2004-2014 microchip technology inc. figure 13-6: maximum wdt i pd vs. v dd over temperature figure 13-7: wdt time-out vs. v dd over temperature (no prescaler) maximum max. 125c max. 85c 0.0 5.0 10.0 15.0 20.0 25.0 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 v dd (v) i pd ( ? a) typical: statistical mean @25c maximum: mean (worst-case temp) + 3 ? (-40c to 125c) 0 5 10 15 20 25 30 35 40 45 50 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 v dd (v) time (ms) typical: statistical mean @25c maximum: mean (worst-case temp) + 3 ? (-40c to 125c) max. 125c max. 85c typical. 25c min. -40c downloaded from: http:///
? 2004-2014 microchip technology inc. ds40001239f-page 71 pic10f200/202/204/206 figure 13-8: v ol vs. i ol over temperature (v dd = 3.0v) figure 13-9: v ol vs. i ol over temperature (v dd = 5.0v) (vdd = 3v, -40c to 125c) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 i ol (ma) v ol (v) max. 85c max. 125c typical 25c min. -40c typical: statistical mean @25c maximum: mean (worst-case temp) + 3 ? (-40c to 125c) 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 i ol (ma) v ol (v) typical: statistical mean @25c maximum: meas + 3 (-40c to 125c) typical: statistical mean @25c maximum: mean (worst-case temp) + 3 ? (-40c to 125c) max. 85c typ. 25c min. -40c max. 125c downloaded from: http:///
pic10f200/202/204/206 ds40001239f-page 72 ? 2004-2014 microchip technology inc. figure 13-10: v oh vs. i oh over temperature (v dd = 3.0v) figure 13-11: v oh vs. i oh over temperature (v dd = 5.0v) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 i oh (ma) v oh (v) typ. 25c max. -40c min. 125c typical: statistical mean @25c maximum: mean (worst-case temp) + 3 ? (-40c to 125c) (, ) 3.0 3.5 4.0 4.5 5.0 5.5 -5.0 -4.5 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 i oh (ma) v oh (v) max. -40c typ. 25c min. 125c typical: statistical mean @25c maximum: mean (worst-case temp) + 3 ? (-40c to 125c) downloaded from: http:///
? 2004-2014 microchip technology inc. ds40001239f-page 73 pic10f200/202/204/206 figure 13-12: ttl input threshold v in vs. v dd figure 13-13: schmitt trigger input threshold v in vs. v dd (ttl input, -40c to 125c) 0.5 0.7 0.9 1.1 1.3 1.5 1.7 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 v dd (v) v in (v) typ. 25c max. -40c min. 125c typical: statistical mean @25c maximum: mean (worst-case temp) + 3 ? (-40c to 125c) (st input, -40c to 125c) 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 v dd (v) v in (v) v ih max. 125c v ih min. -40c v il min. 125c v il max. -40c typical: statistical mean @25c maximum: mean (worst-case temp) + 3 ? (-40c to 125c) downloaded from: http:///
pic10f200/202/204/206 ds40001239f-page 74 ? 2004-2014 microchip technology inc. figure 13-14: intosc (internal oscillator) power-up times vs. v dd maximum (sleep mode all peripherals disabled) 0 5 10 15 20 25 30 35 40 45 2 . 02 . 5 3 . 03 . 5 4 . 04 . 5 5 . 05 . 5 v dd (v) power-up time (ms) max. -40c max. 125c typical 25c max. 85c downloaded from: http:///
? 2004-2014 microchip technology inc. ds40001239f-page 75 pic10f200/202/204/206 14.0 packaging information 14.1 package marking information legend: xx...x customer-specific information y year code (last digit of calendar year) yy year code (last 2 digits of calendar year) ww week code (week of january 1 is week 01) nnn alphanumeric traceability code pb-free jedec ? designator for matte tin (sn) * this package is pb-free. the pb-free jedec designator ( ) can be found on the outer packaging for this package. note : in the event the full microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information. 3 e 3 e * standard pic ? device marking consists of microchip part number, year code, week code, and traceability code. for pic device marking beyond this, certain price adders apply. please check with your microchip sales office. for qtp devices, any special marking adders are included in qtp price. 6-lead sot-23 example xxnn 8-lead pdip (300 mil) example xxxxxxxxxxxxxnnn yyww 0217 pic10f200 i/p 017 1433 3 e downloaded from: http:///
pic10f200/202/204/206 ds40001239f-page 76 ? 2004-2014 microchip technology inc. package marking information (continued) * standard pic ? device marking consists of microchip part number, year code, week code, and traceability code. for pic device marking beyond this, certain price adders apply. please check with your microchip sales office. for qtp devices, any special marking adders are included in qtp price. legend: xx...x customer-specific information y year code (last digit of calendar year) yy year code (last 2 digits of calendar year) ww week code (week of january 1 is week 01) nnn alphanumeric traceability code pb-free jedec ? designator for matte tin (sn) * this package is pb-free. the pb-free jedec designator ( ) can be found on the outer packaging for this package. note : in the event the full microchip part number cannot be marked on one line, i t will be carried over to the next line, thus limiting the number of available characters for customer-specific information. 3 e 3 e 8-lead dfn (2x3x0.9 mm) example be0 433 17 downloaded from: http:///
? 2004-2014 microchip technology inc. ds40001239f-page 77 pic10f200/202/204/206 table 14-1: 8-lead 2x3 dfn (mc) package top marking table 14-2: 6-lead sot-23 (ot) package top marking part number marking pic10f200-i/mc ba0 pic10f200-e/mc bb0 pic10f202-i/mc bc0 pic10f202-e/mc bd0 pic10f204-i/mc be0 pic10f204-e/mc bf0 pic10f206-i/mc bg0 pic10f206-e/mc bh0 part number marking pic10f200-i/ot 00nn pic10f200-e/ot 00nn pic10f202-i/ot 02nn pic10f202-e/ot 02nn pic10f204-i/ot 04nn pic10f204-e/ot 04nn pic10f206-i/ot 06nn pic10f206-e/ot 06nn note: nn represents the alphanumeric traceability code. downloaded from: http:///
pic10f200/202/204/206 ds40001239f-page 78 ? 2004-2014 microchip technology inc. 14.2 package details the following sections give the technical details of the packages. 
 

       
 !"!

#$!
!% 

# $ 
 
!% 

# $ 
  
#&!   !   
!#
   "'( )*+ )  
 
#&#,$
--#
$##
     .
# 
#$ # /! - 0   # 
  1/ %#

#!# ## +22---
  
2 / 3# 44" "  
4# 5 56 7 5$8 
%1 5 9 1#  ()* 6$# !4!1#  )* 6, : #   ; ( 
!!1/ /  < ;  #!
%%   ; ( 6, =!# "  ;  
!!1/=!# "  ; < 6, 4#   ;  .
#4# 4  ; 9 .
# # 4 ( ; < .
# > ; > 4! /  < ; 9 4!=!# 8  ; ( b e 4 n e1 pin1idby laser mark d 1 2 3 e e1 a a1 a2 c l l1 
   

  - *<) downloaded from: http:///
? 2004-2014 microchip technology inc. ds40001239f-page 79 pic10f200/202/204/206 note: for the most current package drawings, please see the microchip packaging specification located at http://www.microchip.com/packaging downloaded from: http:///
pic10f200/202/204/206 ds40001239f-page 80 ? 2004-2014 microchip technology inc. b a for the most current package drawings, please see the microchip packaging specification located at http://www.microchip.com/packaging note: microchip technology drawing no. c04-018d sheet 1 of 2 8-lead plastic dual in-line (p) - 300 mil bod [pdip] eb e a a1 a2 l 8x b 8x b1 d e1 c c plane .010 c 12 n note 1 top view end view side view e downloaded from: http:///
? 2004-2014 microchip technology inc. ds40001239f-page 81 pic10f200/202/204/206 microchip technology drawing no. c04-018d sheet 2 of 2 for the most current package drawings, please see the microchip packaging specification located at http://www.microchip.com/packaging note: 8-lead plastic dual in-line (p) - 300 mil bod [pdip] units inches dimension limits min nom max number of pins n 8 pitch e .100 bsc top to seating plane a - - .210 molded package thickness a2 .115 .130 .195 base to seating plane a1 .015 shoulder to shoulder width e .290 .310 .325 molded package width e1 .240 .250 .280 overall length d .348 .365 .400 tip to seating plane l .115 .130 .150 lead thickness c .008 .010 .015 upper lead width b1 .040 .060 .070 lower lead width b .014 .018 .022 overall row spacing eb - - .430 bsc: basic dimension. theoretically exact value shown without tolerances. 3. 1. protrusions shall not exceed .010" per side. 2.4. noes: -- dimensions d and e1 do not include mold flash or protrusions. mold flash or pin 1 visual index feature may vary, but must be located within the hatched area. significant characteristic dimensioning and tolerancing per asme y14.5m e datum a datum a e b e 2 b e 2 alternate lead design (vendor dependent) downloaded from: http:///
pic10f200/202/204/206 ds40001239f-page 82 ? 2004-2014 microchip technology inc. 
  
!
 " #$%&'(()*+,- !     1, $!&%#$ , 08$#$ #8
#!-# #  # !   1/ ,


&
!#8 #!   1/  - $#!   
!#
   "'( )*+ )  
 
#&#,$
--#
$##
   ".+ %  
0$ $-#
$##
 0%
%
#
 $
 
   .
# 
#$ # /! - 0   # 
  1/ %#

#!# ## +22---
  
2 / 3# 44" "  
4# 5 56 7 5$8 
%1 5 < 1#  ()* 6, : #  <   #!
%%    ( *
## /  ". 6, 4#  )* 6, =!# " )* "&
!1!4#   ; (( "&
!1!=!# " ( ; ( *
##=!# 8  (  *
##4# 4   ( *
###
"&
!1! ?  ; ; d n e note 1 1 2 exposed pad note 1 2 1 d2 k l e2 n e b a3 a1 a note 2 bottom view top view 
   

  - ** downloaded from: http:///
? 2004-2014 microchip technology inc. ds40001239f-page 83 pic10f200/202/204/206 note: for the most current package drawings, please see the microchip packaging specification located at http://www.microchip.com/packaging downloaded from: http:///
pic10f200/202/204/206 ds40001239f-page 84 ? 2004-2014 microchip technology inc. appendix a: revision history revision c (august 2006) added 8-pin dfn pin diagram; revised table 1-1; reformatted all registers; revised section 4.8 and added note; section 5.3 (changed figure reference to figure 5-1); tables 6-1 and 7-1 (removed shading from trisgpio (i/o control register); sections 8.1-8.4 (changed table reference to table 12-2); section 14.1 revised and replaced package marking information and drawings, added tables 14-1 & 14-2, added dfn package drawing. revision d (april 2007) revised section 12.1, 12.2, 12.3, table 1-1, 12-1, 12-3, 12-4. added section 13.0. replaced package drawings (rev. ap); removed instances of picmicro ? and replaced it with pic ? . revision e (october 2013) revised figure 8-1 (deleted osccal); revised packaging legend. revision f (september 2014) added table 12-6 (thermal considerations); updated register 4-1, register 9-1 and chapter 14 (packaging information); other minor corrections. downloaded from: http:///
? 2004-2014 microchip technology inc. ds40001239f-page 85 pic10f200/202/204/206 the microchip web site microchip provides online support via our www site at www.microchip.com . this web site is used as a means to make files and information easily available to customers. accessible by using your favorite internet browser, the web site contains the following information: product support C data sheets and errata, application notes and sample programs, design resources, users guides and hardware support documents, latest software releases and archived software general technical support C frequently asked questions (faq), technical support requests, online discussion groups, microchip consultant program member listing business of microchip C product selector and ordering guides, latest microchip press releases, listing of seminars and events, listings of microchip sales offices, distributors and factory representatives customer change notification service microchips customer notification service helps keep customers current on microchip products. subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest. to register, access the microchip web site at www.microchip.com . under support, click on customer change notification and follow the registration instructions. customer support users of microchip products can receive assistance through several channels: distributor or representative local sales office field application engineer (fae) technical support customers should contact their distributor, representative or field application engineer (fae) for support. local sales offices are also available to help customers. a listing of sales offices and locations is included in the back of this document. technical support is available through the web site at: http://microchip.com/support downloaded from: http:///
pic10f200/202/204/206 ds40001239f-page 86 ? 2004-2014 microchip technology inc. product identification system to order or obtain information, e. g., on pricing or delivery, refer to the factory or the listed sales office . part no. x /xx xxx pattern package temperature range device device: pic10f200 pic10f202 pic10f204 pic10f206 pic10f200t (tape & reel) pic10f202t (tape & reel) pic10f204t (tape & reel) pic10f206t (tape & reel) tape and reel option: blank = standard packaging (tube or tray) t = tape and reel (1) temperature range: i= - 4 0 ? c to +85 ? c (industrial) e= - 4 0 ? c to +125 ? c (extended) package: p = 300 mil pdip (pb-free) ot = sot-23, 6-ld (pb-free) mc = dfn, 8-ld 2x3 (pb-free) pattern: qtp, sqtp, code or special requirements (blank otherwise) note 1: tape and reel identifier only appears in the catalog part number description. this identifier is used for ordering purposes and is not printed on the device package. check with your microchip sales office for package availability with the tape and reel option. [x] (1) tape and reel option - examples: a) pic10f202t - e/ot tape and reel extended temperature sot-23 package (pb-free) b) pic10f200 - i/p industrial temperature, pdip package (pb-free) c) pic10f204 - i/mc industrial temperature dfn package (pb-free) downloaded from: http:///
? 2004-2014 microchip technology inc. ds40001239f-page 87 information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. it is your responsibility to ensure that your application meets with your specifications. microchip makes no representations or warranties of any kind whether express or implied, written or oral, statutory or otherwise, related to the information, including but not limited to its condition, quality, performance, merchantability or fitness for purpose . microchip disclaims all liability arising from this information and its use. use of microchip devices in life support and/or safety applications is entirely at the buyers risk, and the buyer agrees to defend, indemnify and hold harmless microchip from any and all damages, claims, suits, or expenses resulting from such use. no licenses are conveyed, implicitly or otherwise, under any microchip intellectual property rights. trademarks the microchip name and logo, the microchip logo, dspic, flashflex, flexpwr, jukeblox, k ee l oq , k ee l oq logo, kleer, lancheck, medialb, most, most logo, mplab, optolyzer, pic, picstart, pic 32 logo, righttouch, spynic, sst, sst logo, superflas h and uni/o are registered trademarks of microchip technology incorporated in the u.s.a. and other countries. the embedded control solutions company and mtouch are registered trademarks of microc hip technology incorporated in the u.s.a. analog-for-the-digital age, bodycom, chipkit, chipkit logo, codeguard, dspicdem, dspicdem.net, ecan, in-circuit serial programming, icsp, inter-chip connectivity, kleernet, kleernet logo, miwi, mpasm, mpf, mplab certified logo, mplib, mplink, multitrak, netdetach, omniscient code generation, picdem, picdem.net, pickit, pictail, righttouch logo, real ice, sqi, serial quad i/o, total endurance, tsharc, usbcheck, varisense, viewspan, wiperlock, wireless dna, and zena are trademarks of microchip technology incorporated in the u.s.a. and other countries. sqtp is a service mark of microchip technology incorporated in the u.s.a. silicon storage technology is a registered trademark of microchip technology inc. in other countries. gestic is a registered trademar ks of microchip technology germany ii gmbh & co. kg, a subsidiary of microchip technology inc., in other countries. all other trademarks mentioned herein are property of their respective companies. ? 2004-2014, microchip technology incorporated, printed in the u.s.a., all rights reserved. isbn: 978-1-63276-597-0 note the following details of the code protection feature on microchip devices: microchip products meet the specification contained in their particular microchip data sheet. microchip believes that its family of products is one of the mo st secure families of its kind on the market today, when used i n the intended manner and under normal conditions. there are dishonest and possibly illegal methods used to breach the code protection feature. all of these methods, to our knowledge, require using the microchip products in a manner outsi de the operating specifications contained in microchips data sheets. most likely, the person doing so is engaged in theft of intellectual property. microchip is willing to work with the customer who is concerned about the integrity of their code. neither microchip nor any other semiconductor manufacturer ca n guarantee the security of their code. code protection does not mean that we are guaranteeing the product as unbreakable. code protection is constantly evolving. we at microchip are committed to continuously improving the code protection features of our products. attempts to break microchips code protection feature ma y be a violation of the digital millennium copyright act. if such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that act. microchip received iso/ts-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in chandler and tempe, arizona; gresham, oregon and design centers in california and india. the company?s quality system processes and procedures are for its pic ? mcus and dspic ? dscs, k ee l oq ? code hopping devices, serial eeproms, microperipherals, nonvolatile memory and analog products. in addition, microchip?s quality system for the design and manufacture of development systems is iso 9001:2000 certified. quality management s ystem certified by dnv == iso/ts 16949 == downloaded from: http:///
ds40001239f-page 88 ? 2004-2014 microchip technology inc. americas corporate office 2355 west chandler blvd. chandler, az 85224-6199 tel: 480-792-7200 fax: 480-792-7277 technical support: http://www.microchip.com/ support web address: www.microchip.com atlanta duluth, ga tel: 678-957-9614 fax: 678-957-1455 austin, tx tel: 512-257-3370 boston westborough, ma tel: 774-760-0087 fax: 774-760-0088 chicago itasca, il tel: 630-285-0071 fax: 630-285-0075 cleveland independence, oh tel: 216-447-0464 fax: 216-447-0643 dallas addison, tx tel: 972-818-7423 fax: 972-818-2924 detroit novi, mi tel: 248-848-4000 houston, tx tel: 281-894-5983 indianapolis noblesville, in tel: 317-773-8323 fax: 317-773-5453 los angeles mission viejo, ca tel: 949-462-9523 fax: 949-462-9608 new york, ny tel: 631-435-6000 san jose, ca tel: 408-735-9110 canada - toronto tel: 905-673-0699 fax: 905-673-6509 asia/pacific asia pacific office suites 3707-14, 37th floor tower 6, the gateway harbour city, kowloon hong kong tel: 852-2943-5100 fax: 852-2401-3431 australia - sydney tel: 61-2-9868-6733 fax: 61-2-9868-6755 china - beijing tel: 86-10-8569-7000 fax: 86-10-8528-2104 china - chengdu tel: 86-28-8665-5511 fax: 86-28-8665-7889 china - chongqing tel: 86-23-8980-9588 fax: 86-23-8980-9500 china - hangzhou tel: 86-571-8792-8115 fax: 86-571-8792-8116 china - hong kong sar tel: 852-2943-5100 fax: 852-2401-3431 china - nanjing tel: 86-25-8473-2460 fax: 86-25-8473-2470 china - qingdao tel: 86-532-8502-7355 fax: 86-532-8502-7205 china - shanghai tel: 86-21-5407-5533 fax: 86-21-5407-5066 china - shenyang tel: 86-24-2334-2829 fax: 86-24-2334-2393 china - shenzhen tel: 86-755-8864-2200 fax: 86-755-8203-1760 china - wuhan tel: 86-27-5980-5300 fax: 86-27-5980-5118 china - xian tel: 86-29-8833-7252 fax: 86-29-8833-7256 china - xiamen tel: 86-592-2388138 fax: 86-592-2388130 china - zhuhai tel: 86-756-3210040 fax: 86-756-3210049 asia/pacific india - bangalore tel: 91-80-3090-4444 fax: 91-80-3090-4123 india - new delhi tel: 91-11-4160-8631 fax: 91-11-4160-8632 india - pune tel: 91-20-3019-1500 japan - osaka tel: 81-6-6152-7160 fax: 81-6-6152-9310 japan - tokyo tel: 81-3-6880- 3770 fax: 81-3-6880-3771 korea - daegu tel: 82-53-744-4301 fax: 82-53-744-4302 korea - seoul tel: 82-2-554-7200 fax: 82-2-558-5932 or 82-2-558-5934 malaysia - kuala lumpur tel: 60-3-6201-9857 fax: 60-3-6201-9859 malaysia - penang tel: 60-4-227-8870 fax: 60-4-227-4068 philippines - manila tel: 63-2-634-9065 fax: 63-2-634-9069 singapore tel: 65-6334-8870 fax: 65-6334-8850 taiwan - hsin chu tel: 886-3-5778-366 fax: 886-3-5770-955 taiwan - kaohsiung tel: 886-7-213-7830 taiwan - taipei tel: 886-2-2508-8600 fax: 886-2-2508-0102 thailand - bangkok tel: 66-2-694-1351 fax: 66-2-694-1350 europe austria - wels tel: 43-7242-2244-39 fax: 43-7242-2244-393 denmark - copenhagen tel: 45-4450-2828 fax: 45-4485-2829 france - paris tel: 33-1-69-53-63-20 fax: 33-1-69-30-90-79 germany - dusseldorf tel: 49-2129-3766400 germany - munich tel: 49-89-627-144-0 fax: 49-89-627-144-44 germany - pforzheim tel: 49-7231-424750 italy - milan tel: 39-0331-742611 fax: 39-0331-466781 italy - venice tel: 39-049-7625286 netherlands - drunen tel: 31-416-690399 fax: 31-416-690340 poland - warsaw tel: 48-22-3325737 spain - madrid tel: 34-91-708-08-90 fax: 34-91-708-08-91 sweden - stockholm tel: 46-8-5090-4654 uk - wokingham tel: 44-118-921-5800 fax: 44-118-921-5820 worldwide sales and service 03/25/14 downloaded from: http:///


▲Up To Search▲   

 
Price & Availability of PIC10F206T-IOTGVAO

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X